Fig. 8. Taphonomic modifications in dinosaur remains from the Cerro Guillermo area. A-F. Skeletal remains of a sauropod indet. IANIGLA-PV.113 from the CG1 site, FL 2. A. Associated bones (distal end of femur, fibula and proximal end of humerus) showing the longitudinal cracks that suggest advanced weathering; B-F. Appendicular bones, dorsal ribs and the scapula show transverse, oblique fractures and tubular fossil traces on the external surface; G-K.Skeleton remains of Notocolossus gonzalezparejasi UNCUYO-LD. 301 from the CG2 site, FL 1. The right humerus and dorsal vertebra display slight cracking of the periosteum; I, J. The right humerus showing bioerosion attributes on its external surface; L-N. Skeleton remains of Notocolossus gonzalezparejasi UNCUYO-LD. 302 from the CG3 site, FL 1. L.The anterior caudal section shows slight weathering before burial; M, N. The foot displays slightly horizontal thrust of the metatarsals I and II due to compaction phenomena. See text for further explanation.
7.1.1. Taphonomic mode 1. Disarticulated-associated bones in well-drained floodplains
Associated specimens are frequently found and they represent the most common preservation mode in the studied sites. Disarticulated but still associated bones of a sauropod indet. were preserved in the sandy mudstones deposited on the floodplain in the (CG1 site, fossil level (FL 2)). These lithofacies show scarce development of paleosol horizons and the sedimentation rate was slow and essentially episodic.
The bones were found close to the death site, within the same area, disarticulated and somewhat scattered. However, the elements remained in association confirming their parautochthonous condition, such as it was found in other dinosaur sites at Neuquén Group (MT1 from González Riga et al., 2003, 2007). They showed evidence of partial disarticulation, subaerial biodegradation, weathering and cracking. Some bones displayed processes of preferential orientation, hydraulic sorting and sedimentary abrasion. This fact indicates that they were oriented and dispersed by shallow currents during flood episodes of the alluvial plain. Although the bones were reworked by processes of disarticulation and dispersion, they remained within the area of death. On the other hand, the absence of calcareous crusting favored the intense abrasion.
7.1.2. Taphonomic mode 2. Associated partial skeletons in well-drained floodplains
Incomplete skeletons usually include associated remains of the axial and appendicular skeleton, ranging from 2 to 3 disarticulated bones to accumulations of partly articulated remains from various body parts (e.g., Smith et al., 2002; Van Itterbeeck et al., 2004; González Riga et al., 2007; Csiki et al., 2010; Smith et al., 2015). This taphonomic mode is registered in the fossil level (FL1) in both CG2 and CG3 sites and comprises two associated partial skeletons assigned to Notocolossus gonzalezparejasi. The dinosaur remains also were preserved in the sandy mudstones deposited on the floodplain facies, but in this case, the lithofacies show a well-developed paleosols. In the dinosaur-bearing lithofacies, the processes of bioturbation and pedogenesis were very intense and contributed to the oxidation of sediments and recycling of organic matter. The carbonates and other minerals available in this depositional environment caused the rapid permineralization and partially articulated preservation of the specimens.
The specimen found in the CG2 site was preserved very close to the death site, within the same area, with a short pre-burial phase. Since the bones remained for some time on the surface, they underwent processes of dispersion, subaerial biodegradation, weathering, bioerosion and crusting. The absence of sorting by shape and size in the bones as well as of preferential orientations indicate scarce hydraulic transport processes. In this case, evidences suggest biological intervention (predators and/or scavengers) as dispersing agents. These parautochthonous fossil assemblages resulted from the decay and burial of partially complete carcasses.
The specimen of the CG3 site was preserved at the site of death, without evidence of transport and with a very short pre-burial time period favoring articulated conservation. The absence of skeletal parts, which are easily destroyed and/or removed, suggests that these skeletons were subjected to short-distance transport, limited and selective dispersal and/or removal of the elements. The most portion of the skeleton it disappeared, possibly result of predatory or scavenging activity, as hydraulic transport seemed an unlikely cause. The skeletal elements do not evidence weathering either intense or slight, abrasion, bioerosion, and orientation produced by sporadic currents. They exhibit a calcareous crusting, calcareous concretions and distortions. The articulated preservation without evidence of weathering together with the sedimentary context suggests the absence of hydraulic action. Based on the available evidence so far, it is considered that biological organisms (predators or scavengers) acted as dispersing agents during the burial history. However, for to confirm this interpretation, further studies are necessary. This mode of occurrence confirms their autochthonous condition.
7.1.3. Taphonomic mode 3. Isolated bones in fluvial channels
Isolated bones represent the less frequent occurrence of dinosaur remains in the Cerro Guillermo area. The saurischian remains (sauropods and theropods) were preserved in the coarse-grained sandstones deposited on the channel floor as “lag deposits” formed under extreme flow conditions (i.e., high-energy and large transport capacity). This taphonomic mode is registered in the (CG2 site, fossil level (FL 2)) and comprise bones preserved away from the site of death. These isolated bones show highly fragmentary nature and are usually weathered and abraded, such as it was found in other taphonomic sites in the Neuquén Group (MT2 of González Riga et al., 2003). They show pre-burial signs like complete disarticulation, weathering, fracturing, abrasion and sorting by hydraulic processes.
Phenomena of sorting and abrasion in skeletal parts, in channel lags and bars, generally indicate some degree of transport and hydraulic selection. Therefore, the bones are considered allochthonous which were transported together by high-energy currents, mixed and reworked. The skeletal remains of different specimens, time intervals and origin areas were preserved together within the same area. This fact confirmed the existence of “time averaging” in these fossiliferous concentrations.
7.2. Taphonomic pathways
The genesis of the bone accumulations recognized in the Cretaceous deposits of Cerro Guillermo (CG1, CG2 and CG3 sites) can be explained within a relatively simple scenario. After death, the carcasses were subjected to sequences of biostratinomic processes (vertebrate taphonomy; Table 2) leading to the formation of the above described taphonomic modes. These different taphonomic pathways were dependent on the cause of death; place of death; local depositional environment; climate cycle as well as anatomy and preservational potential of the different organisms (Csiki et al., 2010).
Prior to burial, the sauropod bones found in the floodplain likely undergone processes of pre-fossilization weathering as temperature changes, solar radiation, saturation and desiccation, all common in environments with episodic sedimentation (Bridge, 2003). The carcasses were sometimes subaerially exposed for long time periods, leading to the almost complete removal of the soft tissue and weathering as well as dispersal and fragmentation of the bones. Biostratinomic processes were favored by the development of sub-arid episodes within the floodplain. These episodes are confirmed by the presence of eolian sandstones at the Cerro Colorado section -Río Neuquén Subgroup- (González Riga, 2002) laterally correlated to the study area. Behrensmeyer (1978) described similar features in bones under arid or saline conditions.
Moreover, the periods of flooding with high sediment input into the floodplain were favourable to concentration and burial of partial carcasses and isolated bones, concentrating the fragmentary remains in fluvial channels. The presence of articulated remains can be explained by transport of the respective skeletal parts into the place of burial as partial carcasses or by rapid in situ burial in still soft sediments deposited on the floodplain. Well-drained floodplain fossil assemblages, especially the common incomplete and partial skeletons are characterized by a higher degree of articulation. On the other hand, parautochthonous burial of partial skeletons in, or very close to, the site of death might have also occurred in these distal floodplain settings, leading to the formation of taphocoenoses dominated by the associated remains of one single individual (Csiki et al., 2010).
In the associated specimens, the taphonomic signatures are more constant suggesting a similar taphonomic history. The sauropod remains were preserved in the sandy mudstones in well-drained floodplains with different degree of paleosols development, from a lesser level of develop as seen in CG1 site, until higher levels as observed in CG2 and CG3 sites. Well-drained bearing floodplains fossils were sites of intense bioturbation and pedogenesis in which organic debris were readily oxidized (Bridge, 2006). This type of environment was optimal for the preservation of organic remains (e.g., root traces, burrows and articulated/disarticulated bones) in the study area.
In contrast, the isolated saurischian bones preserved in the coarse-grained sandstones of the CG2 site, and transported through the fluvial channel-lag formed under extreme flow conditions, experienced complete disarticulation, weathering, fracturing, abrasion and sorting due to hydrodynamic processes. These bones are considered allochthonous because that they were transported together by high-energy currents, mixed and reworked. This type of occurrence showed that taphocoenoses was accumulated and reworked during several years because multiple events confirming “time averaging” of remains (sensu Kidwell and Behrensmeyer, 1993). Frequently, advanced weathering and abrasion stages characterize bones preserved in coarse-grained deposits, while these modifications are usually less profound in floodplain deposits.
Furthermore, diagenetic processes, mineralization and compaction, which occurred in the burial environments (floodplain and fluvial channel) has been recognized in a previous study (Previtera, 2017). According to this study, after the burial, the main diagenetic processes that affected the dinosaur bones were compaction, plastic deformation, permineralization and substitution. The ionic substitution of the hydroxyapatite by francolite -in the bone microstructure- was confirmed, in the first moment through the XRD analysis (see Previtera, 2017), and also by the SEM-EDS method performed here. This is a typical mineral replacement of fossilized bone (Lucas and Prévôt, 1991; Kolodny et al., 1996; Elorza et al., 1999) and it is common in many other dinosaur sites (e.g., Hubert et al., 1996; Pereda-Suberbiola et al., 2000; Paik et al., 2001; Luque et al., 2009; Rogers et al., 2010; Piga et al., 2011; among others.
Especially, the existence of “open fractures” in saurischian bones indicates post-fossilization weathering processes -subaerial exposure- flaking and fracturing occurred during exhumation events (telodiagenesis). These processes are the result of the differences in burial depth, temperature and geostatic pressure suffered by the fossils in each burial environment (Previtera, 2017). Similar fossil-diagenetic features have been identified in other cretaceous tetrapod assemblages of Patagonia (González Riga and Astini, 2007; González Riga et al., 2009; Casal et al., 2013; Previtera, 2011, 2013).
Changes in the preservation of fluvial transported fossils over time has been influenced not only by evolution of life on land but also by changes in climate and tectonic activity. Variations in these latter cause modifications also in the depositional environments and hence in the types of organisms present and their modes of preservation. Some important stages in the evolution of life on land relating to fossil preservation are given in previous investigations (e.g., Behrensmeyer and Hook, 1992; Buatois et al., 1998; Driese et al., 2000; Shear and Selden, 2001).
In summary, the most of the dinosaur remains analized here come from facies of distal floodplains of meandering fluvial systems, in contrast to the observed in other localities of Mendoza as Arroyo Seco (González Riga, 2003; González Riga and Astini, 2007), and northern Patagonia such as Rincón de los Sauces (Calvo and González Riga, 2003) in which the dinosaur remains come mostly from overbank facies of these systems.
8. Conclusions
The study of the CG1, CG2 and CG3 fossiliferous sites from the Plottier Formation allowed the recognition of different taphonomic modes within these deposits, from isolated bones to partially articulated skeletons of dinosaurs preserved in meandering fluvial systems. The distribution of the different taphonomic modes within sedimentary facies in Cerro Guillermo is uneven. Isolated bones commonly occurred in channel deposits, whereas associated partial skeletons were dominantly found in distal floodplain deposits (especially well-drained ones). Although the composition of these modes might seem unexpected in the light of previous studies, their genesis can be explained as result of taphonomic processes that operated within a fluvial environment under a semi-arid climate, seasonally variable, linked to periods of water deficit. This multidisciplinary survey represents an interesting local taphonomic pattern about saurischian dinosaurs preservation in different burial environments during the Upper Cretaceous.
Acknowledgments
This paper evolved from discussions of taphonomic and environmental aspects of the author’s doctoral dissertation at the Universidad Nacional de Córdoba, Argentina. I would like to thank especially B. González Riga (Thesis Director) for his direction and advice in the geological and paleontological studies that made this manuscript possible and R. Astini (Thesis Co-director) for his important contribution in sedimentary analysis. The IANIGLA-CCT-Mendoza provided assistance during field and laboratory work (electron microscope). SEM and EDS analysis were provided by MEBYM (IANIGLA-CONICET). I gratefully acknowledge both anonymous reviewers for their constructive and valuable comments which improved the manuscript. I thank very much M. Bourguet and C. Sancho for their valuable support in the fieldworks. I am particularly grateful to A. Mancuso for her constructive comments and L. Starkman for improving the English version. This research was supported by the following projects: PICT BID 2005/33984 to J. Calvo, PIP CONICET 5222 to W. Volkheimer, and PIP 0713/09 to B. González Riga.
References
Alcalá Martínez, L. 1994. Macromamíferos neógenos de la fosa de Alfambra-Teruel. Departamento de Paleontología de la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid. Instituto de Estudios Turolenses y Museo de Ciencias Naturales: 554 p. Teruel.
Andreis, R.R.; Iñíguez Rodríguez, A.M.; Lluch, J.J.; Sabio, D.A. 1974. Estudio sedimentológico de las formaciones del Cretácico Superior del área del Lago Pellegrini, Provincia de Río Negro, República Argentina. Revista de la Asociación Geológica Argentina 29: 85-104.
Andrews, P. 1990. Owls, caves and fossils. The Natural History Museum: 231 p. London.
Bastin, G.F.; Van Loo, F.J.J.; Heijligers, H.J.M. 1986. Evaluation of the use of Gaussian φ (ρz) curves in quantitative electron probe microanalysis: A new optimization. X-Ray Spectrometry 13: 91-97.
Behrensmeyer, A.K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4: 150-162.
Behrensmeyer, A.K. 1991. Terrestrial vertebrate Accumu-lations. In Topics in Geology (Allison, P.A.; Briggs, D.E.G.; editors). Plenum Press: 291-327. Nueva York.
Behrensmeyer, A.K.; Hook, R.W. 1992. Paleoenvironmental contexts and taphonomic modes. In Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals (Behrensmeyer, A.K.; Damuth, J.D.; DiMichele, W.A.; Potts, R.; Sues, H.D.; Wing, S.L.; editors). University of Chicago Press: 15-136. Chicago.
Bonaparte, J.F. 1991. The Gondwanan theropod families Abelisauridae and Noasauridae. Historical Biology 5: 1-25.
Bridge, J.S. 1993. Descriptive and interpretation of fluvial deposits: a critical perspective. Sedimentology 40: 801-810.
Bridge, J.S. 2003. Rivers and floodplains. Blackwell Publishing: 608 p. Oxford.
Bridge, J.S. 2006. Fluvial facies models: recent developments. In Facies Models revisted (Crossey, L.J.; McNeill, D.S.; editors). SEPM Society for Sedimentary Research, Special Publication 84: 85-170. Tulsa.
Britt, B.B.; Eberth, D.A.; Scheetz, R.; Greenhalgh, B. 2004. Taphonomy of the DaltonWells dinosaur quarry (Cedar Mountain Formation, Lower Cretaceous, Utah). Journal of Vertebrate Paleontology, Abstract 24 (3): 41A.
Britt, B.B.; Eberth, D.A.; Scheetz, R.D.; Greenhalgh, B.W.; Stadtman, K.L. 2009. Taphonomy of debris-flow hosted dinosaur bonebeds at Dalton Wells, Utah (Lower Cretaceous, Cedar Mountain Formation, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 280: 1-22.
Brown, C.M.; Evans, D.C.; Campione, N.E.; O’Brien, L.J.; Eberth, D.A. 2013. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeography, Palaeoclimatology, Palaeoecology 372: 108-122.
Buatois, L.A.; Mangano, M.G. 1995. Paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: and archetypical subaqueous non-marine trace fossil assemblage. Ichnos 4: 151-161.
Buatois, L.A.; Mangano, M.G. 1996. Icnología de ambientes continentales: problemas y perspectivas. Asociación Paleontológica Argentina, Publicación Especial 4: 5-30.
Buatois, L.A.; Mangano, M.G.; Genise, J.F.; Taylor, T.N. 1998. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios 13: 217-240.
Calvo, J.O.; González Riga, B.J. 2003. Rinconsaurus caudamirus gen. et sp. nov., a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia, Argentina. Revista Geológica de Chile 30: 333-353. doi: 10.5027/andgeoV30n2-a11.
Calvo, J.O.; Porfiri, J.D.; Veralli, C.; Novas, F.E.; Poblete, F. 2004. Phylogenetic status of Megaraptor namunhuaiquii Novas based on a new specimen from Neuquén, Patagonia, Argentina. Ameghiniana 41: 565-575.
Calvo, J.O.; Porfiri, J.D.; González Riga, B.J.; Kellner, A. 2007. A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur. Anais da Academia Brasileira de Ciencias 79: 529-541.
Canudo, J.I.; Oms, O.; Vila, B.; Galobart, A.; Fondevilla, V.; Puertolas-Pascual, E.; Selles, A.C.; Cruzado-Caballero, P.; Dinares-Turelle, J.; Vicens, E.; Castanera, D.; Company, J.; Burrel, L.; Estrada, R.; Marmi, J.; Blanco, A. 2016. The upper Maastrichtian dinosaur fossil record from the southern Pyrenees and its contribution to the topic of the Cretaceouse Palaeogene mass extinction event. Cretaceous Research 57: 540-551.
Casal, G.A.; Martínez, R.D.; Ibiricu L.M.; González Riga, B.; Foix, N. 2013. Tafonomía del dinosaurio terópodo Aniksosaurus darwini, Formación Bajo Barreal, Cretácico Tardío de Patagonia, Argentina. Ameghiniana 50: 571-592.
Casal, G.A.; Ibiricu, L.M.; Allard, J.O.; Martínez, R.D.; Luna, M.; González Riga, B. 2014. Tafonomía del titanosaurio Aeolosaurus colhuehuapensis, Cretácico Superior, Patagonia central, Argentina: un ejemplo de preservación en facies continentales fluviales. Revista Mexicana de Ciencias Geológicas 31: 163-173.
Cazau, L.B.; Uliana, M.A. 1973. El Cretácico Superior continental de la cuenca Neuquina. In Congreso Geológico Argentino, No. 5, Actas III: 131-163. Buenos Aires.
Chiappe, L.M.; Schmitt, J.G.; Jackson, F.D.; Garrido, A.; Dingus, L.; Grellet-Tinner, G. 2004. Nest Structure for Sauropods: Sedimentary Criteria for Recognition of Dinosaur Nesting Traces. Palaios 19: 89-95.
Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J. 2013. The ICS International Chronostratigraphic Chart. Episodes 36 (3): 199-204.
Coria, R.A.; Currie, P.J. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. Geodiversitas 28: 71-118.
Csiki, Z.; Grigorescu, D.; Codrea, V.; Therrien, F. 2010. Taphonomic modes in the Maastrichtian continental deposits of the Haţeg Basin, Romania-Palaeoecological and palaeobiological inferences. Palaeogeography, Palaeoclimatology, Palaeoecology 293: 375-390.
Curry Rogers, K. 2005. Titanosauria. In The Sauropods, evolution and paleobiology (Curry Rogers, K.A.; Wilson, J.A.; editors). University of California Press: 50-103. Berkeley.
Dai, H.; Xing, L.; Marty, D.; Zhang, J.; Persons, W.S.; Hu, H.; Wang, F. 2015. Microbially-induced sedimentary wrinkle structures and possible impact of microbial mats for the enhanced preservation of dinosaur tracks from the Lower Cretaceous Jiaguan Formation near Qijiang (Chongqing, China). Cretaceous Research 53: 98-109.
De Ferraríis, C. 1968. El Cretácico del norte de la Patagonia. In Jornadas Geológicas Argentinas, No. 3, Actas I: 121-144. Buenos Aires.
Digregorio, J.H.; Uliana, M.A. 1980. Cuenca Neuquina. In Geología Regional Argentina (Turner, J.C.M.; editor). Academia Nacional de Ciencias 2: 985-1032. Córdoba.
Dingus, L.; Garrido, A.C.; Scott, G.R.; Chiappe, L.M.; Clarke, J.; Schmitt, J.G. 2009. The litho-, bio-, and magnetostratigraphy of titanosaurian nesting sites in the Anacleto Formation at Auca Mahuevo (Campanian, Neuquén Province, Argentina). In Papers on Geology, Vertebrate Paleontology and Biostratigraphy in Honor of Michael O. Woodburne (Albright, L.B.; editor). Museum of Northern Arizona, Bulletin 65: 237-258. Arizona.
Donovan, S.K.; Paul, C.R.C. 1998. The adequacy of the fossil record. John Wiley and Sons: 312 p. New York.
Driese, S.G.; Mora, C.I.; Elick, J.M. 2000. The paleosol record of increasing plant diversity and depth of rooting and changes in atmospheric pCO2 in the Siluro-Devonian. In Phanerozoic Terrestrial Ecosystems, A Short Course: New Haven, Connecticut (Gastaldo, R.A.; DiMichele, W.A.; editors). The Paleontological Society 6: 47-61.
Eberth, D.A.; Currie, P.J. 2005. Vertebrate taphonomy and taphonomic modes. In Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed: Life of the Past (Currie, P.J.; Koppelhus, E.B.; editors). Indiana University Press: 453-477. Bloomington.
Eberth, D.A.; Currie, P.J. 2010. Stratigraphy, sedimentology and taphonomy of the Albertosaurus bonebed (Upper Horseshoe Canyon Formation; Maastrichtian), southern Alberta, Canada. Canadian Journal of Earth Sciences 47: 1119-1143.
Eberth, D.A.; Britt, B.B.; Scheetz, R.; Stadtman, K.L.; Brinkman, D.B. 2006. Dalton Wells: geology and significance of debris-flow-hosted dinosaur bonebeds in the Cedar Mountain Formation (Lower Cretaceous) of eastern Utah, USA. Palaeogeography, Palaeo-climatology, Palaeoecology 236: 217-245.
Ekdale, A.A.; Bromley, R.G.; Pemberton, S.G. 1984. Ichnology, Trace Fossils. In Sedimentology and Stratigraphy. Society of Economic Palaeontologists and Mineralogists (SEPM), Short Course 15: 317 p. Tulsa.
Elorza, J.; Astibia, H.; Murelaga, X.; Pereda-Suberbiola, X. 1999. Francolite as a diageneticmineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Research 20: 169-187.
Fisher, S.G.; Heffernan, J.B.; Sponseller, R.A.; Welter, J.R. 2007. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89: 84-96.
Franzese, J.; Spalletti, L.; Gómez Pérez, J.; Macdonald, D. 2003. Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along Andean foothills of Argentina (32º-54º S). Journal of South American Earth Sciences 16: 81-90.
Frey, R.W.; Pemberton, S.G.; Fagerstom, J.A. 1984. Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology 58: 511-528.
Friend, P.F. 1983. Towards the field classification of alluvial architecture or sequence. In Modern and Ancient Fluvial System (Collinson, J.D.; Lewin, J.; editors). International Association of Sedimentologists, Special Publication 6: 345-354.
Friend, P.F.; Slater, M.J.; Williams, R.C. 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. Journal of the Geological Society of London 136: 39-46.
Garrido, A.C. 2010. Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina (Argentina): nueva propuesta de ordenamiento litoestratigráfico. Revista del Museo Argentino de Ciencias Naturales 12 (2): 121-177. Buenos Aires.
Garrido, A.C.; Chiappe, L.M.; Jackson, F.; Schmitt, J.; Dingus, L. 2001. First sauropod nest structures. Journal of Vertebrate Paleontology 21 (3): 53A.
Google Earth Pro. Mendoza, Argentina date image: october 1, 2006, 37º06’48.15’’S, 69º23’05.60’’W, elevation 863 m, eye alt 19.92 km. Image 2016 Digitalglobe http://www.earth.google.com.
González Riga, B.J. 2002. Estratigrafía y Dinosaurios del Cretácico Tardío en el extremo sur de la provincia de Mendoza, Argentina. Ph.D. Thesis (Unpublished), Universidad Nacional de Córdoba: 280 p. Argentina.
González Riga, B.J. 2003. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza Province, Argentina. Ameghiniana 40: 155-172.
González Riga, B.J.; Astini, R.A. 2007. Preservation of large titanosaur sauropods in overbank fluvial facies: A case study in the Cretaceous of Argentina. Journal of South American Earth Sciences 23: 290-303.
González Riga, B.J.; Ortiz David, L. 2014. A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous (Cerro Lisandro Formation) of Mendoza Province, Argentina. Ameghiniana 51: 3-25
González Riga, B.J.; Calvo, J.O.; Previtera, E. 2007. Análisis tafonómicos de saurópodos titanosaurios en la Cuenca Neuquina (Argentina) y sus implicancias en estudios sistemáticos. In Internacionales sobre Paleontología de Dinosaurios y su entorno, Actas: 235-241. Burgos.
González Riga, B.J.; Calvo, J.O.; Porfiri, J. 2008. An articulated titanosaur from Patagonia (Argentina): new evidences of the pedal evolution. Palaeoworld 17: 33-40.
González Riga, B.J.; Previtera, E.; Pirrone, C.A. 2009. Malarguesaurus florenciae gen. et sp. nov., a new titanosauriform (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza, Argentina. Cretaceous Research 30: 135-148.
González Riga, B.J.; Calvo, J.O.; Astini, R.A.; Parras, A.M. 2003. Preservación tafonómica de titanosaurios (Dinosauria, Sauropoda) en facies fluviales del sector septentrional de la Cuenca Neuquina. Ameghiniana 40 (4): 102R.
González Riga, B.J.; Lamanna, M.C.; Ortiz David, L.D.; Calvo, J.O.; Coria, J.P. 2016. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Scientific Reports 6: 1-15.
González Riga, B.J.; Mannion, P.D.; Poropat, S.F.; Ortiz David, L.D.; Coria, J.P. 2018. Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships. Zoological Journal of the Linnean Society 20: 1-46.
Groeber, P. 1946. Observaciones geológicas a lo largo del meridiano 70°.1, Hoja Chos Malal. Revista de la Sociedad Geológica Argentina 1 (3): 177-208.
Heer, O. 1877. Flora Fossils Helvetidae. Die vorweltliche Flora der Schweiz. J. Würster and Co.:182 p. Zurich.
Heinrich, W.D. 1999. The taphonomy of dinosaurs from the Upper Jurassic of Tendaguru (Tanzania) based on field sketches of the German Tendaguru Expedition (1909-1913). Mitteilungen Museum fur Naturkunde Berlin, Geowissenschaftliche Reihe 2: 25-61.
Howell, J.A.; Schwarz, E.; Spalletti, L.A.; Veiga, G.D. 2005. The Neuquén Basin: an overview. In The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics (Veiga, G.; Spalletti, L.; Howell, J.; Schwarz, E.; editors). Geological Society of London, Special Publications 252 (1): 1-14.
Hubert, J.F.; Panish, P.T.; Chure, D.J.; Prostak, K.S. 1996. Chemistry, micro-structure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research 66: 531-547.
Hugo, C.A.; Leanza, H.A. 2001. Hoja geológica 3969-IV General Roca (escala 1:250.000) Provincias de Río Negro y Neuquén. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino (SEGEMAR), Boletín 308: 1-65. Buenos Aires.
Keidel, J. 1917. Über das patagonische Tafelland undihre ziehungen zu den geologischen ercheinnugen in den Argentinischen Anden gebiet und Litoral. Zeitschrift der Deutsche Akademie Wiessenschaft 3: 219-245.
Kidwell, S.M.; Behrensmeyer, A.K. 1993. Summary: estimates of time-averaging. In Taphonomic Approaches to Time Resolution in Fossil Assemblages (Kidwell, S.M.; Behrensmeyer, A.K.; editors). Short Courses in Paleontology, No. 6. Paleontological Society: 301-302. Knoxville, Tennesee.
Kolodny, Y.; Luz, B.; Sander, M.; Clemens, W.A. 1996. Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 161-171.
Leanza, H.A. 2009. Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie 11: 145-184. Buenos Aires.
Leanza, H.A.; Hugo, C.A. 2001. Cretaceous red beds from southern Neuquén Basin, Argentina: age, distribution and stratigraphic discontinuities. In Asociación Paleontológica Argentina (Leanza, H.A.; editor). International Simposium on Mesozoic Terrestrial Ecosystem, No. 7, Publicación Especial 7: 117-122. Buenos Aires.
Leanza, H.A.; Apesteguia, S.; Novas, F.; De La Fuente, M.S. 2004. Cretaceous terrestrial beds from the Neuquén Basin, Argentina and their tetrapod assemblages. Cretaceous Research 25: 61-87.
Legarreta, L.; Gulisano, C.A. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). In Cuencas Sedimentarias Argentinas (Chebli, G.; Spalletti, L.; editores). Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Serie Correlación Geológica 6: 221-243. San Miguel de Tucumán.
Legarreta, L.; Uliana, M.A. 1991. Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. In Sedimentation, Tectonics and Eustasy: Sea level Changes at Active Plate Margins (MacDonald, D.I.; editor). International Association of Sedimentologists, Special Publication 12: 429-450. Oxford.
Legarreta, L.; Kokogian, D.A.; Boggetti, D.A. 1989. Depositional sequences of de Malargüe Group (Upper Cretaceous-Lower Tertiary), Neuquén Basin, Argentina. Cretaceous Research 10: 337-356.
Lucas, J.; Prévôt, L.E. 1991. Phosphates and Fossil Preser-vation. In Taphonomy: Releasing the Data Locked in the Fossil Record (Allison, P.A.; Briggs, D.E.G.; editors). Plenum Press: 389-409. New York.
Luque, L.; Alcalá, L.; Mampel, L.; Pesquero, M.D.; Royo-Torres, R.; Cobos, A.; Espílez, A.G.; Ayala, D. 2009. Mineralogical, Elemental and Chemical Composition of Dinosaur Bones from Teruel (Spain). Journal of Taphonomy 7: 151-178.
Lyman, R.L. 1994. Vertebrate Taphonomy. Cambridge University Press: 524 p.
Marshall, L.G. 1989. Bone modification and “the laws of burial”. In Bone modification (Bonnichsen, R.; Sorg, M.H.; editors). University of Maine Center for the Study of the First Americans 7-24. Orono.
Martinsen, O.J.; Ryseth, A.; Helland-Hansen, W.; Flesche, H.; Torkildsen, G.; Idil, S. 1999. Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, U.S.A. Sedimentology 46: 235-259.
Méndez, V.; Zanettini, J.C.; Zappetini, E.O. 1987. Aspectos geológicos del Orógeno Andino Central de la República Argentina. In Congreso Geológico Argentino, No. 8, Actas I: 181-184. Tucumán.
Miall, A.D. 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Review 22: 261-308.
Miall, A.D. 1996. The Geology of Fluvial Deposits. Springer-Verlag Berlin Heidelberg: 583 p. New York.
Novas, F.E. 1996. Alvarezsauridae, Cretaceous basal birds from Patagonia and Mongolia. Memoirs of the Queensland Museum 39: 675-702.
Novas, F.E. 1997. Megaraptor namunhuaiquii, gen. et sp. nov., a large clawed Late Cretaceous theropod from Patagonia. Journal of Vertebrate Paleontology 18: 4-9.
Novas, F.E.; Puerta, P. 1997. New evidence concerning avian origins from the Late Cretaceous of Patagonia. Nature 387: 390-392.
Paik, I.S.; Kim, H.J.; Park, K.H.; Song, Y.S.; Lee, Y.I.; Hwang, J.Y.; Huh, M. 2001. Paleoenvironments and taphonomic preservation of dinosaur bone-bearing deposits in the Lower Cretaceous Hasandong Formation, Korea. Cretaceous Research 22: 627-642.
Pereda-Suberbiola, X.; Astibia, H.; Murelaga, X.; Elorza, J.J.; Gómez-Alday, J.J. 2000. Taphonomy of the Late Cretaceous dinosaur-bearing beds of the Laño Quarry (Iberian Peninsula). Palaeogeography, Palaeoclimatology, Palaeoecology 157: 247-275.
Piga, G.; Santos-Cubedo, A.; Brunetti, A.; Piccinini, M.; Malgosa, A.; Napolitano, E.; Enzo, E. 2011. A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 310: 92-107.
Plint, A.G.; Browne, G.H. 1994. Tectonic event stratigraphy in a fluvio-lacustrine, strike-slip setting: the Boss Point Formation (Westphalian A), Cumberland Basin, Maritime Canada. Journal Sedimentary Research 64: 341-364.
Powell, J.E. 2003. Revision of South American Titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum: 173 p. Launceston.
Previtera, E. 2011. Tafonomía de Dinosaurios Cretácicos de la Cuenca Neuquina sur mendocina, Patagonia Argentina. Ph.D. Thesis (Unpublished), Universidad Nacional de Córdoba: 202 p.
Previtera, E. 2013. Tafonomía de vertebrados del Cretácico Superior de la Formación Loncoche en Calmuco (Mendoza, Argentina): implicancias paleoambientales y paleogeográficas. Ameghiniana 50: 483-492.
Previtera, E. 2017. Bone microstructure and diagenesis of saurischian dinosaurs from the Upper Cretaceous (Neuquén Group), Argentina. Andean Geology 44 (1): 39-58. doi: 10.5027/andgeoV44n1-a03.
Ramos, V. 1981. Descripción geológica de la Hoja 33c, Los Chihuidos Norte, Provincia de Neuquén. Servicio Geológico Nacional, Boletín 182: 1-103. Buenos Aires.
Retallack, G.J. 2001. Soils of the Past. An introduction to Paleopedology. Blackwell Science: 404 p. Oxford.
Rogers, R.R.; Eberth, D.A.; Fiorillo, A.R. 2007. Bonebeds: Genesis, analysis, and paleobiological significance. The University of Chicago Press: 499 p. Chicago.
Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J. 2010. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the Upper Cretaceous Two Medicine and Judith River formations of Montana. Palaios 25: 183-195.
Salgado, L.; Coria, R.A.; Calvo, J.O. 1997. Evolution of Titanosaurid Sauropods. I: Phylogenetic analysis based on the postcraneal evidence. Ameghiniana 34: 3-32.
Sánchez, M.L.; Heredia, S.; Calvo, J.O. 2006. Paleoambientes sedimentarios del Cretácico Superior de la Formación Plottier (Grupo Neuquén), departamento de Confluencia, Neuquén. Revista de la Asociación Geológica Argentina 64: 3-18.
Schwarz, E. 2012. Sharp-based marine sandstone bodies in the Mulichinco Formation (Lower Cretaceous), Neuquén Basin, Argentina: remnants of transgressive offshore sand ridges. Sedimentology 59: 1478-1508.
Shear, W.A.; Selden, P.A. 2001. Rustling in the undergrowth: animals in early terrestrial ecosystems. In Plants Invade the Land (Gensel, P.G.; Edwards, D.; editors). Columbia University Press: 29-51. New York.
Smith, R.M. 1993. Vertebrate Taphonomy of Late Permian floodplain deposits in the Southwestern Karoo Basin of South Africa. Palaios 8: 45-67.
Smith, R.M.H.; Sidor, C.A.; Tabor, N.J.; Steyer, J.S. 2015. Sedimentology and vertebrate taphonomy of the Moradi Formation of northern Niger: A Permian wet desert in the tropics of Pangaea. Palaeo-geography, Palaeoclimatology, Palaeoecology 440: 128-141.
Smith, T.; Codrea, V.; Săsăran, E.; Van Itterbeeck, J.; Bultynck, P.; Csiki, Z.; Dica, P.; Fărcaş, C.; Folie, A.; Garcia, G.; Godefroit, P. 2002. A new exceptional vertebrate site from the Late Cretaceous of the Haţeg Basin (Romania). Studia Universitatis Babes-Bolyai. Geologia, Special Issue 1: 321-330.
Tunik, M.; Folguera, A.; Naipauer, M.; Pimentel, M.; Ramos, V. 2010. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489: 258-273.
Van Itterbeeck, J.; Săsăran, E.; Codrea, V.; Săsăran, L.; Bultynck, P. 2004. Sedimentology of the Upper Cretaceous mammal-and dinosaur-bearing sites along the Râul Mare and Bărbat rivers, Haţeg Basin, Romania. Cretaceous Research 25: 517-530.
Varricchio, D.J. 1995. Taphonomy of Jack’s Birthday Site, a diverse dinosaur bonebed from the Upper Cretaceous Two Medicine Formation of Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 114: 297-323.
Varricchio, D.J.; Horner, J.R. 1993. Hadrosaurid and lambeosaurid bone beds from the Upper Cretaceous Two Medicine Formation of Montana: taphonomic and biologic implications. Canadian Journal of Earth Sciences 30: 997-1006.
Vergani, G.D.; Tankard, A.J.; Belotti, H.J.; Weisink, H.J. 1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In Petroleum Basins of South America, American Association of Petroleum Geologists, Memoir 62: 383-402.
Wilson, J.A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136: 217-276.
White, P.D.; Fastovsky, D.E.; Sheehan, P.M. 1998. Taphonomy and suggested structure of the dinosaurian assemblage of the Hell Creek Formation (Maastrichtian), eastern Montana and western North Dakota. Palaios 13: 41-51.
|