MIOCENE BRYOZOA FROM GUADAL FORMATION AT THE SOUTHERN BORDER OF LAGO GENERAL CARRERA, AYSEN, REGION OF CHILE, SOUTH AMERICA

KRISTER BROOD

Paleozoologiska sektionen Riksmuseet, 104 05 Stockholm, Sweden

ABSTRACT

Bryozoa from the marine Guadal Formation (Oligocene-Miocene), cropping out at the southern border of Lago General Carrera, Aisen Region (XI) of Chile (46°30' S: 72°W) are here described.

The Cyclostomatous genera Iretocycloecia, Tubulipora, Tennysonia, Pustulopora, Hornera, Crisina and Crisia represented by eight species were found. Four new species are introduced: Tretocycloecia chile-chicoensis, Tubulipora chilensis, Neofungella ovata and Idmidronea robusta.

RESUMEN

Sc describen Briozoos procedentes de la Formación Guadal (Oligoceno-Mioceno), cuyos afloramientos se extienden al sur del Lago General Carrera, Región de Aisén (XI)-Chile (46°30' S; 72°W).

Se identifican los siguientes géneros del orden Cyclostomata, representados por ocho especies: Tretocycloecia, Tubulipora, Tennysonia, Pustulopora, Hornera, Crisina y Crisia. Además, se introducen como especies nuevas las siguientes formas: Tretocycloecia chile-chicoensis, Tubulipora chilensis, Neofungella ovata e Idmidronea robusta.

INTRODUCCION

The Bryozoa discussed in the present paper have been collected from Guadal Formation at two localities outcropping at the southern border of Lago General Carrera (Fig. 1): (1) Western outcrops: near Puerto Guadal; (2) Eastern outcrops: near Chile-Chico town.

The material was collected by Hans Niemeyer, Geologist of the Instituto de Investigaciones Geológicas, in 1974.

The here studied fossiliferous samples consist of lithified, calcareous sandstones, and contain a fair amount of Bryozoa. Bryzoa are an important biological constituent of sedimentary rocks together with molluscs, calcareous algae and porifera. The state of preservation of the bryozoa is reasonably good, but external weathering and recrystallization occur. Thus, preparation of external charac-

ters of the Bryozoa contained in these rock samples is difficult and they have mainly been identified from thin sections and peels. Therefore, only Cyclostomes which can be successfully indentified in sections are discussed here, although Cheilostomes are also present in the investigated material.

Bryozoa from the Tertiary of southern South America have been studied earlier by several authors including Ortmann (1902), Canu (1904; 1909) and Conti (1949). Tertiary Southamerican bryozoa species have been commonly considered conspecific with modern and Tertiary species from Europe. These identifications are obviously open to question as a close comparison of Southamerican material and European specimens considered, could reveal conspecific differences.

Revista (ienlógica de Chile No. 12, p. 59-77, 2 figs., 6 plates.

The following abbreviations are used in this report:

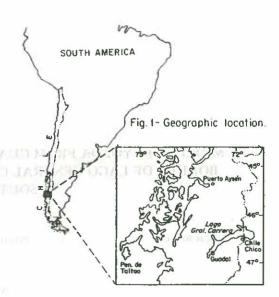
: number of measured objets. N

: arithmetic mean value, given with X

confidence interval.

: coefficient of variation. : standard deviation.

observed range. O.R.


width of autozooecial aperture. width of autozooecial peristome. azp

kzw : width of kenozooecial apeture.

: width of pore. pw

: number of opening zooecia in 1 mm². z/mm : distance between fascicles of autodaf

zooccia.

Brood (1972). The list of synonyms considers records from southern South America only. The

The terminology used here is the same as in type material (GID 597-610) is deposited in the Geological Institute, University of Stockholm.

PART I: BRYOZOA FROM WESTERN OUTCROPS NEAR PUERTO GUADAL

The material of the westerly outcrops of Lago General Carrera comes from three sections in the limbs of a broad syncline in the Guadal Formation: Pampa Castillo (Field numbers HN-C94-73 and HN-C89-B73), El Manzano (Field number HN-D7-73), and Pampa Guadal (Fiel number HN D24-73), (Fig. 2). Table 1 shows the distribution of identified Cyclostomatous bryozoa found in this material, and Plates 1 to 4 ilustrate it.

Tretocycloecia roveretoi (Conti), 1949

(Pl. 1, Figs. 1-5 and Pl. 2, Figs. 1-2)

Heteropora roveretoi Conti, 1949, p. 291, Pl. 4, Figs. 1,4.

Dimensions

O. R.

N=46

6.97 0.0073 aw . . . kw . . . 0.030 - 0.075 0.049 ± 0.002 17.33 0.0084 az/mm 10-15 12.2 ± 0.4 10.18 1.24 kz/mm² 60 - 74 65.4 ± 1.2 6.13 4.01

TABLE 1 DISTRIBUTION OF IDENTIFIED CYCLOSTOMATOUS BRYOZOA FROM STRATIGRAPHIC SECTION NEAR PUETO GUADAL.

Sections	Pampa Castillo		El Manzano	Pampa Guadal
Species Samples	HN-C94-73	HN-C89-B73	HN-D7-73	HN-D24-73
Tretocycloecia roveretoi (Conti)	Lot Miles	x	THE SHOP	-my America d
Tubulipora chilensis n. sp.	X	x	x	Secretarities 412
Tennysonia subcylindrica Ortmann	x	x	other or specia	x
Pustulopora australis Busk	The separate	x	x	any after the 2
Pustulopora sp. A.	of the participation		with the XDUNETTO	x
Hornera cf. striata Milne-Edwards	111 m (23n		x	- July Server Virtu
Crisina radians Lamarck	General Military	x	presentation per	T MOON HAND
Crisia sp.			×	

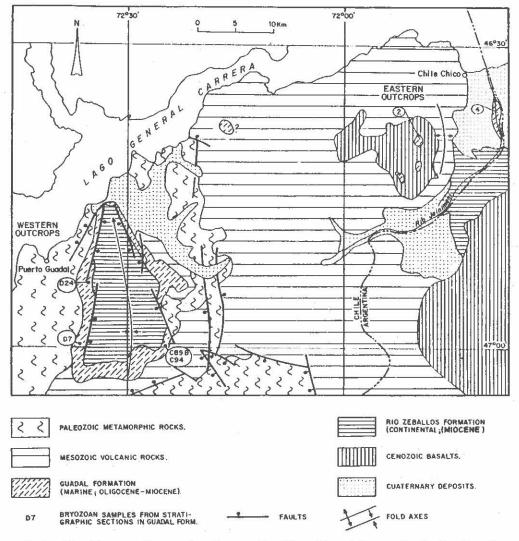


Fig.2 - Simplified geologic map of southern border of Lago General Carrera showing location of bryozoan samples from Guadal Formation (After Niemeyer, 1975).

Description. The colony forms hemispherical masses with short, bifurcating, cylindrical stems. The autozooecia open all over the surface of the colony and the apertures are flush with the surface. The autozooecia are surrounded by the kenozooecia, which are approximately four times as common as the first ones. The stems are approximately 2.8 - 3.2 mm thick. The apertures of the autozooecia are generally circular; the kenozooecial apertures are commonly polygonal or oval, but may also be circular.

As seen in a section, the autozooccia are long and begin in the centre of the stem, their proximal part running parallel with the growing direction of the stem. The distal end turns abruptly outwards and opens transversely to the surface of the colony. The interzooccial walls are thin (~0.01 mm) in the endozone; they widen in the exozone, where their thickness increases up to 0.05 mm. New zooccia begin in the corners between already existing zooccia without affecting their shape. Numerous interzooidal pores cross the interzooccial walls. Kenozooccia only exist in the exozone.

Ultrastructurally, the skeleton consists of laminar and granular calcite. The main part of the skeleton is formed by tabular laminae, which are approximately 0.4 μ thick and several μ wide. The

central part of the interzooecial walls are commonly occupied by a zone with coarse tabular crystals, of approximately 1 μ . A middle granular layer appears to be generally absent or poorly developed.

The internal surface of the zooecia bears several small spines (Pl. 1, Fig. 5), which are approximately 15 μ at their base, and consist of a central core of granular calcite surrounded by inclined laminae.

Occurrence. The present species occurs in the Miocene of South America. It is found in the Superpatagonian of Peninsula de Valdés, Argentina (Conti, 1949); and it is also found in the Aisen Region of Chile.

Remarks. The present species is characterized by the small auto- and kenozooecial dimensions and the comparatively high number of kenozooecia.

Tubulipora chilensis n. sp. (Pl. 2, Figs. 3-4)

Holotype. Specimen GI D 528, illustrated in Pl. 2, Fig. 4.

Type Stratum and Type Locality. The Oligo-Miocene of Guadal in Lago General Carrera area.

Derivation of Name. After the country of Chile. Material. Approximately 10 specimens. GI D 528 and 529 and several unnumbered sections.

Diagnosis. A Tubulipora species with medium sized autozooecia and four to five autozooecia in each fascicle.

Dimensions

N=30 O. R. x

az... 0.130 - 0.185 0.153 ± 0.004 7.32 0.0112 pz... 0.150 - 0.235 0.187 ± 0.004 5.57 0.0103

Description. The zoarium is partly erect, composed of bifurcating flattened stems, which appear oval or flattened rhomboidal in cross section. The apertures of the autozooecia open in alternating, transverse fascicles on the frontal side of the stem. The stems are approximately 1.8 - 2.2 mm wide and 0.7 - 0.8 mm thick. The exterior zooecial wall is penetrated by numerous small pseudopores.

Transverse sections show rhombic or polygonal cross sections of the autozooecia. The internal zooecial walls are approximately 0.02 mm and the exterior ones, approximately 0.03 mm thick. In longitudinal section, the zooecial walls are commonly undulating.

Microstructurally, the skeleton consists of laminar and granular calcite. The laminar crystals are approximately 0.5 μ thick and 3-5 μ wide. The granular middle layer within the interzooecial walls is poorly developed.

Occurrence. The present species has so far only been found at Guadal in the Aisen region.

Remarks. The present species is characterized by comparatively few autozooecia in the fascicles and undulating interzooecial walls.

Tennysonia subcylindrica Ortmann, 1902 (Pl, 2, Fig. 7)

Tennysonia subcylindrica Ortmann, 1902, p. 69, Pl. 13, Fig. 5.

Tennysonia subcylindrica Ortmann, Canu, 1904, p. 22.

Tennysonia subcylindrica Ortmann, Canu, 1909, p. 320, Pl. 13, Fig. 1.

Remarks. Two section of a double walled, cancellate species have been obtained from the investigated material. These specimens agree well with descriptions and figures of *T. subcylindrica*, which is cercainly a double walled form, possibly related to the crisinides.

Pustulopora australis Busk, 1852 (Pl. 2, Figs. 1-6)

Pustulopora australis Busk, 1852, p. 350. Pustulopora australis Busk, Busk, 1875, p. 21, Pl. 17 A.

Entalophora australis (Busk), Mac-Gillivray, 1887, p. 219.

Entalophora australis (Busk), Borg, 1944, p. 111, Pl. 2, Figs. 1-2.

Remarks. The skeleton is composed of laminar and granular calcite. The laminar layer consists of lath-like crystals, approximately $0.4 - 0.5 \mu$ thick. The granular middle layer of the interzooecial walls is thin; approximately $2 - 4 \mu$ thick.

The present species, which is here considered as identical with the modern *P. australis* from the Antarctic and Australia, is characterized by large autozooecia dimensions with a diameter of the autozooecial aperture of approximately 0.25 mm and the presence of numerous pseudopores in the exterior zooecial walls.

Pustulopora sp. A

Remarks. Several specimens of a Pustulopora species with small autozooecial dimensions occur in the investigated material. The stems are approximately 0.5 mm wide and the width of the autozooecial aperture is approximately 0.10 mm. The microstructure of the skeleton consists of laminar and granular calcite. The laminae are approximately 0.5 mm thick. These specimens probably belong to a new species.

Hornera cf. striata Milne-Edwards, 1838 (Pl. 4, Figs. 1-4)

Hornera striata Milne-Edwards, 1838 (?), p. 213, Pl. 11, Fig. 1.

Hornera striata Milne-Edwards, Canu, 1909, p. 313, Pl. 11, Figs. 1-6.

Description. The zoarium is erect with dichotomously branching stems. The stems are oval in transverse section. The autozooecia open irregularly on the frontal side of the stem but tend to become arranged in lateral lines. The autozooecial apertures are circular, with an approximate diameter of 0.08 - 0.09 mm. The exterior side is ornamented with longitudinally arranged, bifurcating and anastomosing ribs. The zoarial walls are penetrated by numerous pores with an approximate diameter of 0.05 mm.

The ultrastructure consists of laminar and granular calcite. Granular calcite is located in the central part of the interzooecial wall and may be up to 0.02 mm thick, also occuring as central cores of the spinose structures on the reverse side of the stems (Pl. 4, Fig. 1). These cores are approximately 3 μ thick; the laminae are approximately 0.4 - 0.5 μ thick and 4 - 5 μ wide, and they may be up to 50 μ or more in length.

Remarks. This hornerid species, which occurs in several sections, is probably identical with the Hornera striata reported from Argentine by Canu (1909). However, the specimens from southern Chile differ from the European specimens in having larger apertures of the autozooecia and in showing a tendency to grouping autozooecial apertures in transverse lines. Presumably, the specimens from south Chile belong to a yet undescribed species, but the material here investigated is not sufficient to postulate a new species.

Crisina radians Lamarck, 1816

Remarks. Two specimens of a Crisina species are found in the investigated material. They consist of the modern C. radians type, and are probably conspecific with it as the dimensions and structure are almost identical. The presence of a Crisina species in the investigated material is of interest as this genus has never been reported from South America before (Borg, 1941).

Crisia sp.

Remarks. One specimen of an unidentified Crisia species was found.

PART II BRYOZOA FROM EASTERN OUTCROPS NEAR CHILE-CHICO

The material of the easterly outcrops of Lago General Carrera come from two sections: one from Guadal Formation sediments within a basaltic sequence at Meseta Buenos Aires, (Field number HN 2-74) and the other one from an isolated out-

crop of Guadal Formation at Río Geinimeni (Field number HN 4-74) (Fig. 2). Table II shows the distribution of identified Cyclostomatous bryozoa found and Plates 5 and 6 illustrate this material.

TABLE II.

DISTRIBUTION OF IDENTIFIED CYCLOSTOMATOUS BRYOZOA FROM STRATIGRAPHIC SECTIONS NEAR CHILE-CHICO TOWN

Sections Sections	Meseta Buenos Aires	Río Geinimeni
Species Samples	HN 2-74	HN 4-74
Tretocycloecia chile-chicoensis n. sp.	x	- Villa en -
Neofungella ovata n. sp.		x
Idmidronea robusta n. sp.	x	

Tretocycloccia chile-chicoensis n. sp. (Pl. 5, Figs. 1-5)

Type. GID 598, holotype; GID 599, 600, paratypes.

Type Locality and Type Stratum. Chile-Chico, Lago General Carrera, Aisen region of Chile; Oligocene-Miocene.

Derivation of Name. The present species is named after the town of Chile-Chico.

Material, Two zoaria.

Description. The zoarium is creet, composed of stout, branching cylindrical stems. The surface is smooth. The auto- and kenozooecia open irregularly all over the surface. The kenozooecia are approximately four times more numerous than the autozooecia. The autozooecial aperture is circular and of moderate size; the kenozooecial aperture is generally polygonal and much smaller than the above ones.

The autozooecia are budded from the centre of the stem and curve gently outwards. The zooecia open transversely to the surface of the stem. The endozone is comparatively thick. The interzooccial walls are thin (~ 0.020 - 0.030 mm), and pentrated by numerous interzooidal pores. Apart from the diaphragms formed during the degeneration-regeneration processes, they are rare, but a few basal and intermediate diaphragms may be found in the proximal part of the zooecia. The interzooecial walls are constituted by approximately $0.06~\mu$ thick lath-like laminae. No broodchamber has been observed.

Dimensions

O. R.

N=45

azw	0.100 - 0.120	0.108 ± 0.001	4.20	0.0045
kzw	0.052 - 0.075	0.060 ± 0.003	15.73	0.0094
az/mm²	17 - 24	20.1 ± 0.5	8.63	1.735
kz/mm²	58 - 88	74 2 + 2 7	11 96	8 877

Remarks. T. chile-chicoensis is characterized by its moderate dimensions, thin interzooccial walls with many interzooidal pores, and few diaphragms. It differs from T. roveretoi (Conti) in having fewer autozooccia, wider kenozooccia and lacking the internal spines. It differs from Heteropora bifurcata Canu, H. thevenini Canu, H. crassa Canu, and H. ortmanni Canu in the much smaller dimensions of the zooccia.

Neofungella ovata n. sp. (Pl. 5 Fig. 6 and Pl. 6, Figs. 1-3)

Type. GID 597, holotype; GID 595, paratypes.

Type Locality and Type Stratum. Chile-Chico,
Lago General Carrera, Aisen region of Chile;
Oligocene-Miocene.

Derivation of Name. Ovatus (latin) = egg-shaped, referring to shape of the zoarium.

Material. Two colonies.

Description. The zoarium is globular or massive, composed of several superimposed layers, which are approximately 2 mm thick. The autozooecia are generally short and confined to one growth layer only, but some pass through one or more layers. The surface is smooth. Both auto- and kenozooecia open irregularly all over the smooth surface. The kenozooecia are approximately twice as numerous as the autozooecia. The autozooecial aperture is circular and of moderate size. The kenozooecial aperture is smaller and generally circular, but it may also be polygonal in younger stages.

In longitudinal section, the interzooecial walls are thin and 0.02 - 0.03 mm thick. The zooecia generally lack basal and intermediate diaphragms, but terminal diaphtagms occur. Interzooecial pores are common. Brood-chambers are not observed.

Dimensions

N=30	U. R.	X	V	S
azw	0.080 - 0.110	0.099 ± 0.002	7.31	0.0072
kzw	0.046 - 0.075	0.058 ± 0.002	12.04	0.0070
az/mm²	19 - 25	21.7 ± 0.5	7.32	1.558
kz/mm²	36 - 46	41.4 ± 0.8	6.59	2.72

Remarks. The present species is characterized by the moderate dimensions of the zooecia and by having twice as many kenozooecia as the autozooecia; this being the difference between N. ovata and type species of the genus, N. claviformis (Waters). The assignment of the present species to Neofungella is therefore tentative.

The skeleton of the present species is recrystallized and the ultrastructure cannot be determined.

Idmidronea robusta n. sp. (Pl. 6, Figs. 4-9)

Type. GID 605, holotype; GID 606-610, paratypes.

Derivation of Name. Robustus (latin) = robust, referring to the large dimensions of the zoarium. Type Locality and Type Stratum. Chile-Chico, Lago Genral Carrera, Aisen region of Chile; Oligocene-Miocene.

Material. One very large zoarium with hundreds of stems.

Description. The zoarium is erect. composed of dichotomously branching stems. The latter are rounded-triangular in cross section and approximately 1 mm wide. The autozooecia open in alternating, lateral fascicles consisting of six to eight zooecia each. The autozooecial aperture is of moderate size. The back side of the stem is smooth and rounded. No kenozooecia are present on the back side of the stems except for the basal part of the zoarium. The gonozooecium is not observed.

In thin section the autozooccia are moderately long. They are budded from the dorsal side. The interzooccial walls are thin in the proximal and middle parts (approximately $10~\mu$) but thicken in the distal end. The interzooccial walls are formed by two laminar layers separated by a thin middle granular layer which is approximately $4~\mu$ thick. Each laminae is approximately $0.6~\mu$ thick. The exterior walls are thick, approximately $40~\mu$, and penetrated by numerous pseudopores, while interior walls are penetrated by interzooidal pores. Basal and intemediate diaphragms rarely occur.

Dimensions

O, R.

N=41

azw	0.080 - 0.108	0.094 ± 0.002	6.96	0.0066
azp	0.110 - 0.135	0.122 ± 0.005	13.49	0.0165
daf	0.40 - 0.65	0.55 ± 0.02	10.49	0.057

Remarks. The present species is characterized by its thick stems with many autozooecia in the fascicles, a smooth rounded back side and numerous pseudopores in the exterior walls.

REFERENCES

- BANTA, W. 1967. A new species of *Neofungella* (Bryozoa, Stenolaemata) from southern California. Vol. 66, No. 1, p. 35-38.
- BORG, F. 1933. A revision of the recent Hteroporidae. Uppsala Zool. Bidrag., Vol. 14, p. 253-394.
- BORG, F. 1941. On the structure and relationships of Crisina (Bryozoa, Stenolaemata). Ark. F. Zool., Vol. 33 A, No. 11, p. 1-46.
- BORG, F. 1944. The Stenolaematous Bryozoa. Further Zool. Results Studies Swed. Ant. Exp. 1901-1903, Vol. 5, 276 p.
- BROOD, K. 1972. Cyclostomatous Bryozoa from the Upper Cretaceous and Danian in Scandinavia. Stockh. Contr. Geol., Vol. 26, 464 p.
- BUSK, G. 1875. Catalogue of Marine Polyzoa in the collection of the British Museum. Part. 3: Cyclostomata. London.
- CANU, F. 1904. Les Bryozoaires de Patagonien. Echelle de Bryozoaires pour les terrains Tertiaires. Mén. Pal. Soc. Géol. France, Vol. 12, No. 33, p. 61-87.
- CANU, F. 1909. Iconographie de Bryozoaires de l' Argentine. Mus. Nat. Buenos Aires, An., Vol. 3, No. 10, p. 245-341.
- CANU, F.; BASSLER, R. S. 1923. North American Later Tertiary and Quaternary Bryozoa. U.S. Natl. Mus., Vol. 125, 302 p.
- CONTI, S. 1949. I Briozoi dell'Aonichense (Superpata-

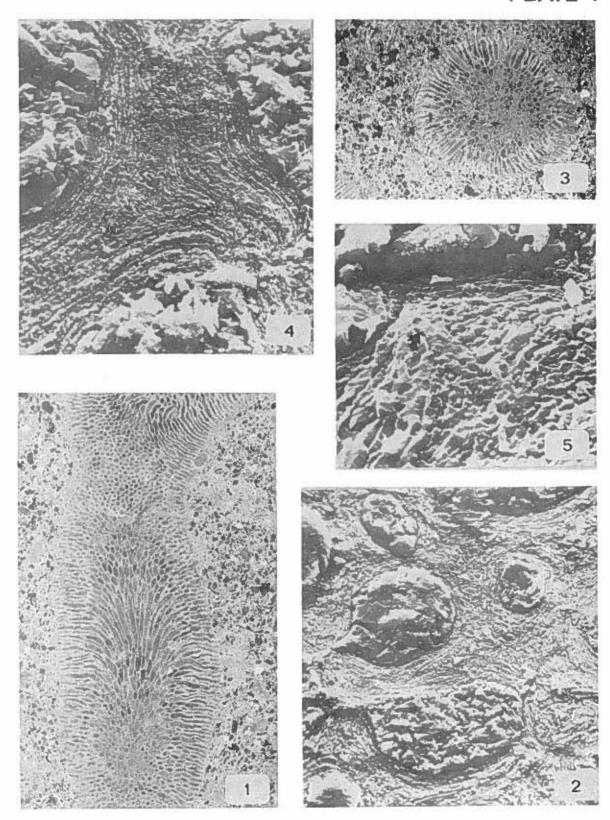

- goniano) di S. José nella Penisola di Valdez (Argentina). Civ. Mus. di Nat., Ann., Vol. 63, p. 283-293.
- HOFFSTETTER, R. 1957. Lexique Stratigraphique International. Vol. 5, No. 7: Chile, 444 p.
- MAC-GILLIVRAY, P.H. 1887. A Catalogue of The Marine Polyzoa of Victoria, Roy. Soc. Victoria, Trans. and Proc., Vol. 23.
- MILNE-EDWARDS, M. H. 1838. Mémoire sur les Crisies, les Hornéres et plusieurs autres Polypes vivants ou fossiles dont l'organisation est analogue a celle des Tubulipores. Sc. Nat. Zool. Ann., Vol. 2, No. 9. Paris.
- NIEMEYER, H. 1975. Geología de la Región Comprendida entre el Lago General Carrera y el Río Chacabuco, Provincia de Aisén-Chile. Memoria de Título, Univ. Chile, Depto. Geol., 309 p. Santiago.
- ORTMANN, A. E. 1902. Tertiary Invertebrates. Princeton Univ., Exp. Patagonia 1896-1899, Reports, Vol. 4, No. 2, p. 45-332.
- WATERS, A. W. 1884. On fossil cyclostomatous Bryozoa from Australia. Geol. Soc., Q. J., No. 40, p. 674-697.
- WATERS, A. W. 1887. On Tertiary cyclostomatous Bryozoa from New Zealand. Geol. Soc., Q. J., No. 43, p. 337-350.

PLATE I

Tretocycloecia roveretoi (Conti), 1949

- Longitudinal section through bifurcating stem showing arrangement of autozooccia, GI D 525. X 15.
- 2 Tangencial section showing auto- and kenozooecia and interzooidal pores. Stereoscan 5326. X 450.
- 3 Transverse section of stem showing budding pattern of zooccia. GID 526. X15.
- 4 Transverse section of interzooecial wall showing arrangement of laminae. Stereoscan 5326. X 1800.
- 5 Spine with calcareous rod of granular calcite (at arrow). Stereoscan 5216. X 2000.

PLATE I

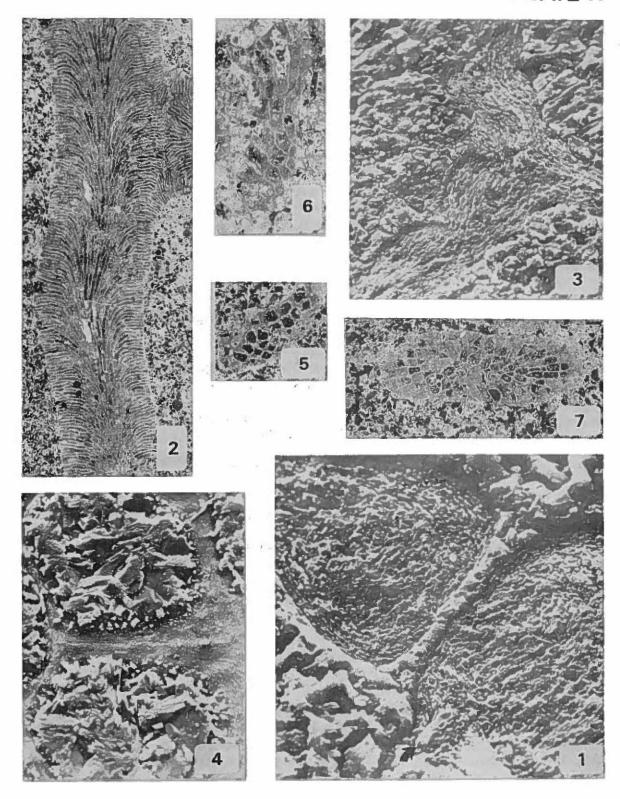
TRETOCYCLOECIA

PLATE II

Tretocycloecia roveretoi (Conti), 1949

- 1 Longitudinal section through interzooecial wall showing interzooidal pore and spine (at arrow) with calcareous rod. Stereoscan 5315. X 900.
- Longitudinal section showing budding pattern of zooecia. GI D 527. X 8.

Tubulipora chilensis n. sp.


- 3 Distal end of interzooecial wall showing connection between interzooecial and exterior wall. Steroscan 5408. X 400.
- Transverse section of autozooecia showing interzooecial wall at centre and exterior walls to the right. Stereoscan 4816.

 X 200.
- 5 Transverse section of stem showing autozooecial arrangement. GI D 528. X 15.
- 6 Oblique longitudinal section of stem showing undulating interzooecial walls, GI D 529, X 15.

Tennysonia subcylindrica Ortmann, 1902

7 Transverse section through bifurcating stem. GI D 530. X 15.

PLATE II

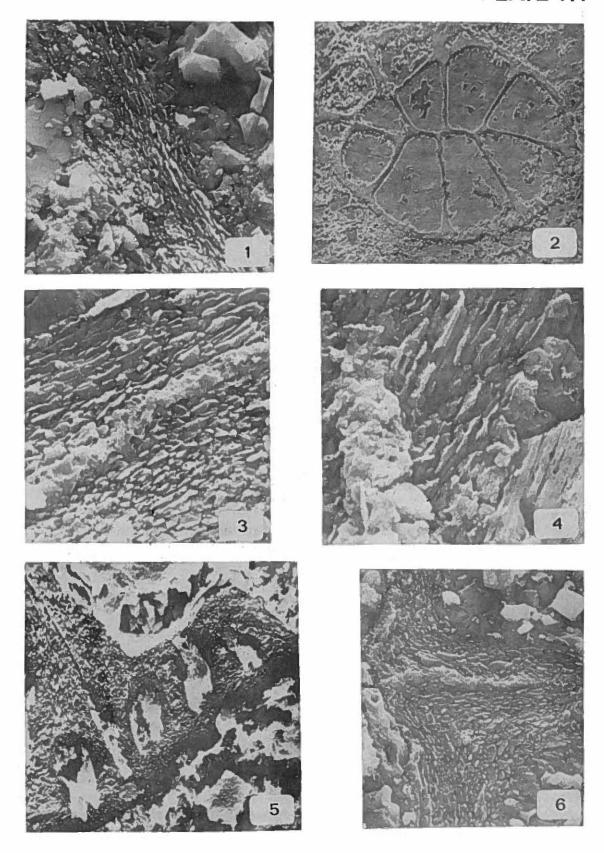

TRETOCYCLOECIA-TUBULIPORA-TENNYSONIA

PLATE III

Pustulopora australis Busk, 1852

- Longitudinal section through exterior wall showing tabular crystals of laminar layer. GI D 4912. X 1000.
- Transverse section through stem showing arrangement of autozooecia. Stereoscan 4911, X 45.
- 3 Section through interzooecial wall showing granular middle layer and flanking laminar layer. Stereoscan 4830. X 2000.
- 4 Section through exterior wall showing pseudopore to the left and crystals from the laminar layer. Stereoscan 4809. X 4000.
- 5 Section through exterior wall showing several close grouped pseudopores. Stereoscan 4924. X 350.
- 6 Section through interzooecial wall passing into exterior wall, showing middle granular layer of interzooecial wall and laminar layer. Stereoscan 5201. X 900.

PLATE III

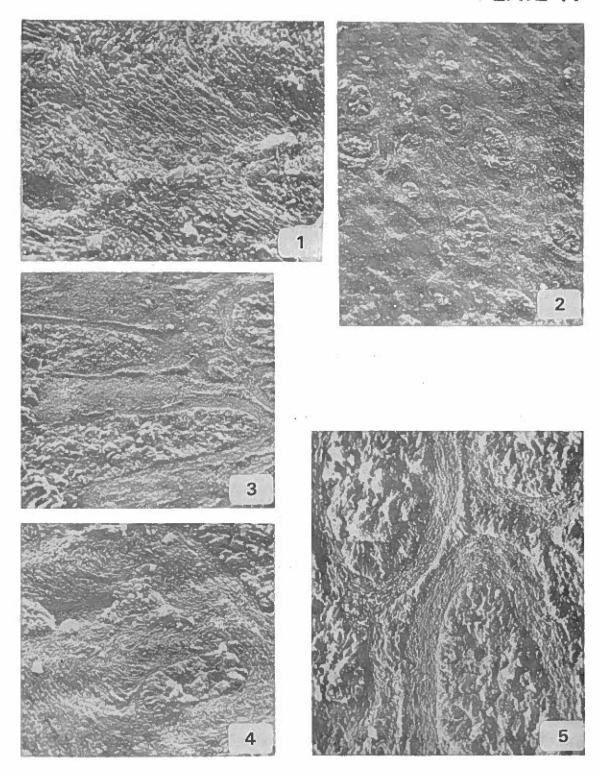

PUSTOLOPORA

PLATE IV

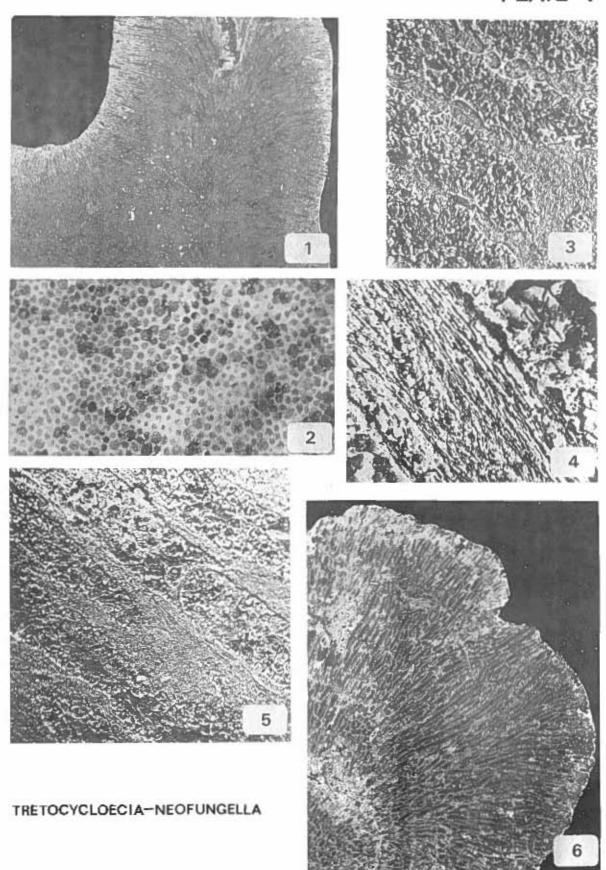
Hornera cf. striata Milne-Edwards, 1838

- Longitudinal section through back side of stem showing laminar zoarial layer crossed by calcareous rods with granular structure. Stereoscan 5429. X 1800.
- 2 Tangential section showing pores penetrating the zoarial laminar layer. Stereoscan 5412. X 180.
- 3 Transverse section of distal end of autozooecia showing granular middle layer surrounded by flanking laminar layers. Stereoscan 5420, X 180.
- 4 Longitudinal section through back side of stem showing pores surrounded by laminar calcite. Stereoscan 5426. X 450.
- 5 Transverse section of interzooecial walls showing well developed middle granular layer and flanking laminar layers. Stereoscan 5419. X 400.

PLATE IV

HORNERA

PLATE V


Tretocycloecia chile-chicoensis n. sp.

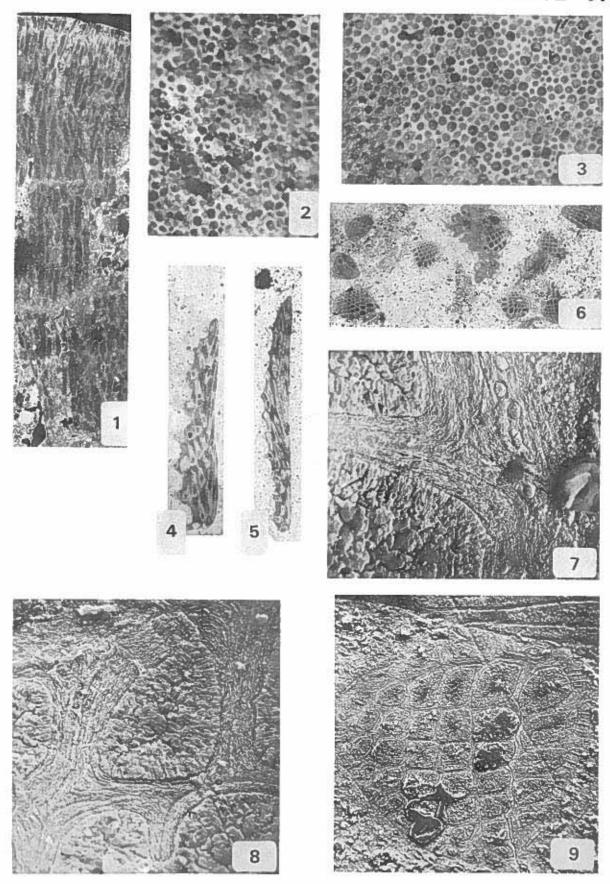
- Longitudinal section showing shape of autozooecia. GID 598, holotype. X 10.
- 2 Tangential section showing auto- and kenozooecia. GID 598, holotype. X 22.
- 3 Longitudinal section through zooecia showing regeneration zone at lower part of picture and interzooecial walls penetrated by interzooidal pores. GID 598, holotype, X 200.
- 4 Longitudinal section of interzooecial wall showing laminae. GID 598. X 1000.
- 5 Longitudinal section showing diaphragm near regeneration zone. GID 598, X 200.

Neofungella ovata n. sp.

Deep tangential section showing auto- and kenozooecia without diaphragms. GID 597, holotype. X 10.

PLATE V

PLATE VI


Neofungella ovata n. sp.

- Longitudinal section showing several growth layers. GID 597 b, paratype. X 18.
- Surface of holotype showing auto- and kenozooecia. GID 597. X 20.
- 3 Tangential section showing auto- and kenozooecia. GID 597, holotype. X 22.

Idmidronea robusta n. sp.

- 4 Lateral section showing autozooecia. GID 606 b. X 12.
- 5 Longitudinal section showing autozooecia. GID 606 b. X 10.
- 6 Transverse sections. GID 606 c. X 10.
- 7 Transverse section of distal end of autozooccium showing granular middle layer and flanking laminar layers of interzooidal wall and exterior wall penetrated by pseudopores. GID 605, holotype. X 450.
- 8 Transverse section of autozooecia showing granular middle layer and flanking laminar layers. Note interzooidal pores. GID 605, holotype. X 450.
- 9 Transverse section showing autozooecia. GID 605, holotype. X 100.

PLATE VI

NEOFUNGELLA-IDMIDRONEA