

1 The palynology of the President Beaches Formation (Early Cretaceous), Byers
2 Peninsula (Livingston Island, Antarctica)

3 **Docho Dochev¹, Polina Pavlishina¹, *Lubomir Metodiev²**

4 ¹Department of Geology, Palaeontology and Fossil Fuels, Sofia University “St. Kliment Ohridski”, 15
5 Tsar Osvoboditel Blvd, Sofia, 1000, Bulgaria.

6 *dochev@gea.uni-sofia.bg; polina@gea.uni-sofia.bg*

7 ² Geological Institute, Bulgarian Academy of Sciences, Sofia 1113, Acad. G. Bonchev Str., 24, Sofia
8 1113, Bulgaria.

9 *lubo@geology.bas.bg*

10 * Corresponding author: lubo@geology.bas.bg

11
12 **ABSTRACT.** This study reevaluates the chronostratigraphic extent and depositional conditions of the
13 President Beaches Formation at the Byers Peninsula, Livingston Island, South Shetland Islands
14 (Antarctica). Our aim is to constrain its age and improve its regional correlation using new palynological
15 evidence. Dinoflagellate cyst assemblages in four productive samples enabled the recognition of the
16 mid–late Valanginian *Senoniasphaera tabulata* Interval Zone, identified by the presence of its index-
17 species and the coeval occurrence of characteristic dinoflagellate cyst taxa such as *Canningia reticulata*,
18 *Cerbia tabulata*, *Kaiwaradinium scrutillinum*, *Spiniferites* sp., *Oligosphaeridium complex*,
19 *Circulodinium vermiculatum*, and *Hesleronia heslertonensis*. These data extend the scope of the
20 President Beaches Formation, shifting its upper boundary compared to earlier findings. Low-energy
21 neritic conditions are indicated for the investigated succession, characterized by normal marine nutrient
22 availability and relatively oligotrophic water masses. An elevated continental/marine particle ratio
23 (predominance of saccate pollen grains among sporomorphs) further suggests an offshore setting with
24 significant terrestrial input. Palynofacies data support a mid-to-distal shelf depositional environment,
25 consistent with previous lithofacies evidence. The diversity of sporomorphs indicates the hinterland
26 flora primarily comprised pteridophyte-spore generating plants and coniferous woodlands, with nearly
27 equal amounts of *Araucariacites* and *Podocarpidites*. A warm temperate climate with high humidity is
28 also proposed for the mid to late Valanginian in this area.

29 **Keywords:** dinoflagellate cysts, Valanginian, Byers Peninsula, Antarctica.

30
31 **RESUMEN.** Palinología de la Formación President Beaches (Cretácico Temprano), Península
32 Byers (Isla Livingston, Antártica). Este estudio reevalúa la extensión cronoestratigráfica y las
33 condiciones de deposición de la Formación President Beaches en la península Byers, isla Livingston,
34 islas Shetland del Sur (Antártica), con el objetivo de restringir su edad y mejorar su correlación regional

35 mediante nueva evidencia palinológica. Los ensamblajes de quistes de dinoflagelados en cuatro
36 muestras productivas permitieron reconocer la Zona de Intervalo de *Senoniasphaera tabulata* del
37 Valanginiano medio-tardío, identificada por la presencia de su especie índice y la ocurrencia de taxones
38 característicos de quistes de dinoflagelados coetáneos como *Canningia reticulata*, *Cerbia tabulata*,
39 *Kaiwaradinium scrutillinum*, *Spiniferites* sp., *Oligosphaeridium complex*, *Circulodinium vermiculatum*
40 y *Heslertonia heslertonensis*. Estos datos amplían el alcance de la Formación President Beaches,
41 desplazando su límite superior en comparación con hallazgos previos. Se sugieren para la sucesión
42 investigada condiciones neríticas de baja energía, caracterizadas por una disponibilidad normal de
43 nutrientes marinos y masas de agua relativamente oligotróficas, así como una elevada relación
44 continental/marina (predominio entre los esporomorfos de granos de polen sacados), donde esto último
45 indica además un ambiente marino abierto con una significativa contribución terrestre. Los datos de
46 palinofacies apoyan un ambiente de deposición de plataforma media a distal, consistente con
47 información litofacial previa. La diversidad de esporomorfos indica que la flora del interior comprendió
48 principalmente plantas generadoras de esporas de pteridofitas y bosques de coníferas, con proporciones
49 prácticamente idénticas de *Araucariacites* y *Podocarpidites*. Se sugiere un clima templado cálido y
50 húmedo para el Valanginiano medio-tardío en esta región.

51 *Palabras clave: quistes de dinoflagelados, Valanginiano, Península Byers, Antártica.*

52

53 1. Introduction

54 The Byers Peninsula is the westernmost point of Livingston Island and is the largest ice-free
55 area in the South Shetland archipelago (Fig. 1A). Detailed stratigraphic studies have, however,
56 been difficult due to the large presence of periglacial debris and the small and scattered outcrops
57 of sedimentary rocks. Byers Peninsula geology was first studied by Hobbs (1968), who
58 described volcanic rocks interbedded with sandstones and conglomerates, which he termed the
59 "Younger Volcanic Group" and assigned them to the Miocene. Research over the past five
60 decades has revealed that this area consists of a thick Upper Jurassic–Lower Cretaceous
61 volcano-sedimentary succession, containing abundant coherent igneous rocks, now known as
62 the Byers Group (Hernández and Azcárate, 1971; Valenzuela and Hervé, 1972; Crame *et al.*,
63 1993; Duane, 1994; Hathway, 1997; Hathway and Lomas, 1998). The Byers Group comprises
64 mudstone-dominated clastic rocks formed in marginal fore-arc basin settings (Smellie *et al.*,
65 1980; Pimpirev and Vangelov, 1998; Bastias *et al.*, 2020; Georgiev *et al.*, 2023). It includes
66 five superposed lithostratigraphic units, of which four were deposited in marine environments
67 (*i.e.*, the Anchorage, President Beaches, Start Hill, and Chester Cone formations, spanning
68 ?Kimmeridgian–Tithonian to Valanginian), while one (the Cerro Negro Formation, which is

69 early Aptian in age) was deposited in a continental environment (Fig. 1B). Among these, the
70 President Beaches Formation (PBF) and the overlying Chester Cone Formation occupy the
71 largest area in the western part of the Byers Peninsula (Fig. 1B). A number of palaeontological
72 studies have been conducted on the PBF. Notably, Chilean researchers made the first
73 discoveries of Lower Cretaceous ammonites (González-Ferrán *et al.*, 1970; Tavera, 1970).
74 Fragmented Lower Cretaceous Neocomitidae and Spiticerasidae ammonites were found at mid-
75 levels of the formation (Smellie *et al.*, 1980). Covacevich (1976) and Crame *et al.* (1993)
76 reported discoveries of Valanginian cephalopods, bivalves, gastropods, scaphopods, and
77 terebratulid brachiopods from clayey intervals. Crame (1995) described a new bivalve species
78 of *Manticula* from mudrocks. Dochev *et al.* (2017) reported some reworked upper Berriasian
79 ammonites obtained from coarse-grained beds in the PBF.

80 Askin (1981) conducted the earliest palynological study on Byers Peninsula, reporting the
81 first Tithonian–Barremian palynomorphs from the PBF. These included abundant but poorly
82 preserved spores, pollen, and dinoflagellates. Crame *et al.* (1993) also reported varied spores,
83 pollen, and dinoflagellate cysts, interpreting them as evidence of shallow marine depositional
84 conditions. Duane (1994, 1997) later determined the chronostratigraphic extent of the PBF and
85 the Chester Cone Formation based on dinoflagellate cyst assemblages. According to this author,
86 the PBF dated mid-to-late Berriasian, while the Chester Cone Formation was dated as latest
87 Berriasian to early Valanginian. More recently, Dochev and Pavlishina (2020) identified the
88 dinoflagellate cyst *Batioladinium reticulatum* Zone within the PBF, refining its age to the latest
89 Berriasian, closely approaching the Berriasian/Valanginian boundary.

90 During the 2023/2024 field season of the XXXII Bulgarian Antarctic Expedition, a new
91 stratigraphic section in the upper levels of the PBF was made. This section is located west of
92 the Byers Field Camp, between Point Smellie, Wasp Hill, and Devils Point (Fig. 1B). Although
93 earlier Bulgarian expeditions had investigated this area, they did so without measured sections
94 and with only scattered, fossil-barren samples. Crucially, our recent PBF mudstone and siltstone
95 samples yielded well-preserved and diverse organic-walled dinoflagellate cyst assemblages,
96 alongside gymnosperms and pteridophyte spores with considerable morphological diversity.
97 Therefore, the aim of this work is to present new palynological results, refine existing
98 palynological data and age assessments, and provide an amended palaeoenvironmental
99 interpretation of the PBF based on the analysis of dinoflagellate cyst assemblages and
100 palynofacies.

102 **2. Stratigraphic and depositional framework of the PBF**

103 The PBF is probably the thickest sedimentary unit of the Byers Group, comprising several
104 hundred metres of silty-argillaceous strata and containing at least four major sandstone
105 packages (cf. Hathway and Lomas, 1998; Pimpirev and Vangelov, 1998; Lomas, 1999; see also
106 Fig. 1B). According to recent views, it overlies with a sharp boundary the radiolarian mudstones
107 of the Anchorage Formation and is sharply overlain by the volcanic breccias of the Start Hill
108 Formation and the coarse siliciclastic rocks of the Chester Cone Formation (cf. Georgiev *et al.*,
109 2023). Our studied section is located within the uppermost parts and south-westernmost
110 outcrops of the PBF, which are tectonically delimited from the rest of the overall profile. Within
111 a thickness of ~69 metres, we divided the strata into five informal units (Fig. 2): a) (21 m):
112 black, fine-laminated and fissile shale, containing irregular, grey-brown sandstone/siltstone
113 interbeds, grading upwards into grey, poorly laminated silty shale with sandstone interbeds; b)
114 (2 m): medium-grained sandstone with sloped cross-bedding and scattered small pyrite nodules;
115 c) (15 m): black, fine-laminated fissile shale interbedded in the upper parts by siltstone; d) (13
116 m): grey, thin-bedded, medium-grained sandstone (subunits d1: 6 m, and d3: 3 m), incised by
117 unsorted, polymict, matrix-supported pebble conglomerate (subunits d2: 3 m, and d4: 1 m),
118 containing intraformational mudstone clasts, wood debris and reworked ammonites; e) (18 m):
119 black, fine-laminated fissile shale (subunits e1: 3 m, and e3: 5.5 m), incised by unsorted,
120 polymict, matrix-supported pebble conglomerate with mudstone clasts (subunit e2: 4 m) and
121 covered by grey, thin-bedded, medium-grained sandstone (subunit e4: 5.5 m).

122 The bedrock of the succession remains unknown, and its upper limit is unclear as the contact
123 with an overlying andesite-basalt lava flow is normally faulted. We believe that our succession
124 corresponds to alternating lithofacies of F3 to F6 (*sensu* Pimpirev and Vangelov, 1998). This
125 suggests delta slope sediments (mud-dominated facies representing background deposition),
126 intercalated by river floods (sandstone facies), and current-derived sediments (channelized
127 conglomerate facies) formed either through the reworking of fan-derived strata or as debris flow
128 deposits fed by river mouths.

129
130 **3. Material and methods**

131 The sedimentary succession of the PBF section was sampled from the upper part with 5
132 samples and the lower part with 17 samples (Fig. 2). Four of them contained dinoflagellate cyst
133 assemblages, particularly BM-2, BM-4, BM-8 and BM-10 (Fig. 2). Palynological samples were
134 processed at the Sample Preparation Laboratory (GeoPrep) of the Institute of Geological

135 Sciences at the Polish Academy of Sciences (Kraków, Poland) following standard
136 palynological techniques. About 50 g of sediment from each sample was processed by HCl
137 (10%) and HF (40–50%) treatment and heavy liquid separation (e.g., zinc chloride). The
138 residues were finally sieved through 10 µm nylon meshes. Strew mounts were made in
139 glycerine jelly. From each sample, two palynological strew mounts were prepared and analysed
140 for their palynological content under a Leica DM5500 microscope. Selected palynomorphs
141 were photographed with Leica DFC310 FX digital camera. The palynological slides and
142 residues are stored in the collections of the Department of Geology, Paleontology and Fossil
143 Fuels at Sofia University “St. Kliment Ohridski”.

144 Quantitative analysis of dinoflagellate cyst associations was based on counts of 50
145 specimens per slide, where possible. These were described in terms of rare (1–10 specimens)
146 and common (11–20 specimens). Palynofacies analysis involved counting the relative
147 abundance of sedimentary organic constituents based on 400 particles per slide. Three main
148 groups of kerogen constituents proposed by Tyson (1995) and Radmacher *et al.* (2020) were
149 recognized in the slides, namely: 1) phytoclasts (opaque and translucent organic particles); 2)
150 palynomorphs (dinoflagellate cysts, spores and pollen); and 3) amorphous organic matter
151 (AOM). The data were plotted in the ternary AOM–Phytoclast–Palynomorph diagram of Tyson
152 (1993) and in the Microplankton–Spore–Pollen ternary plot (after Fedorova, 1977, and
153 Düringer and Doubinger, 1985). Palynofacies parameters, such as the ratio of continental to
154 marine particles (C/M ratio), the ratio of opaque to translucent phytoclasts (OP/TR ratio) (Tyson
155 1993, 1995), as well as the ratio of peridinioid to gonyaulacoid (P/G) dinoflagellate cysts
156 (Brinkhuis, 1994; Wilpshaar and Leereveld, 1994; Niechwedowicz *et al.*, 2021) were estimated
157 to characterize the palaeoenvironmental settings. The interested reader is referred to Fensome
158 *et al.* (2019) for dinoflagellate cyst taxonomy.

159 4. Results

160 Marine and terrestrial palynomorphs are present in the sampled PBF succession, with a high
161 to moderate species diversity. They include abundant dinoflagellate cysts, subordinate plant
162 spores and pollen grains, and rare micro-foraminiferal test linings. The assemblages are
163 dominated by the dinoflagellate cysts (Fig. 2). Dinocyst assemblages are moderately diverse
164 throughout the section, with more than 22 taxa being consistently present, whereas
165 sporomorphs, including spores and pollen, are represented by 7 species (see the Appendix for
166 the full list of taxa recognised in this study). The dinoflagellate cysts encountered in all
167 productive samples are considered to constitute one single association, as no significant

168 differences in their composition were observed. The following key taxa are identified: *Broomea*
169 *simplex* (Fig. 3A); *Canningia reticulata* (Fig. 3B,C); *Canningia pistica*; *Cerbia tabulata* (Fig.
170 3D); *Endoscrinium prolatum* (Fig. 3E); *Heslertonia heslertonensis* (Fig. 3F); *Batioladinium*
171 *longicornutum* (Fig. 3G); *Batioladinium pomum*; *Circulodinium vermiculatum* (Figs. 3H and
172 4C); *Papuadinium apiculatum* (Fig. 3I); *Senoniasphaera tabulata* (Figs. 3J, 4H, and 4I);
173 *Oligosphaeridium complex* (Fig. 3K); *Batioladinium radiculatum* (Fig. 3L); *Circulodinium*
174 *deflandrei* (Fig. 4A,B); *Circulodinium distinctum*; *Hystrichodinium pulchrum* (Fig. 4D);
175 *Kaiwaradinium scrutillinum* (Fig. 4E,F); *Oligosphaeridium byersense* (Fig. 4G);
176 *Oligosphaeridium diluculum*; *Spiniferites* sp. (Fig. 4J); *Exochosphaeridium phragmites*;
177 *Ctenidodinium elegantulum*; *Canninginopsis colliveri*; and *Cassiculosphaeridia delicata*.
178 Gonyaulacoids dominate dinoflagellate cyst assemblages, most of which show stratigraphical
179 significance. Peridinioid dinoflagellate cysts are common and are mainly represented by species
180 of *Batioladinium* and *Broomea*. Most of the taxa encountered in the assemblages are
181 cosmopolitan, with the exception of *Oligosphaeridium byersense*, which has so far only been
182 recorded from the Byers Peninsula. Spores and pollen grains are encountered in all samples.
183 The spores include examples of *Deltoidospora ordinata*; *Cyathidites australis*; *Cyathidites*
184 *minor*; *Gleicheniidites senonicus*; and *Cicatricosisporites ludbrookiae*. Gymnosperm pollen is
185 abundant in the assemblages and represented by *Araucariacites australis* and *Alisporites*
186 *grandis*. *Araucariacites australis* dominates the sporomorph assemblages in all studied
187 samples.

188 All samples from the PBF section are rich in organic matter (OM). One type of palynofacies
189 covers most intervals of the studied succession and represents approximately the total number
190 of samples (Fig. 4K). The distribution of palynofacies components is illustrated in the ternary
191 AOM-Phytoclast-Palynomorph plot of Tyson (1993) (Fig. 5). The productive samples from the
192 PBF (field numbers BM-2, BM-4, BM-8 and BM-10) contain moderate abundance of
193 phytoclasts (30–50%) with the highest proportion of opaque phytoclasts, but also
194 equidimensional large translucent phytoclasts and a high percentage of AOM (30–40%).
195 Palynomorphs, including dinoflagellate cysts, spores and pollen, comprise up to 30% of the
196 organic components. The ternary plot (Fig. 5) indicates that all samples fall into two distinct
197 but complementary palynofacies fields: VII (distal dysoxic-anoxic shelf) and IV (shelf to basin
198 transition), suggesting therefore a deposition at mid- to distal levels of the low energy dysoxic-
199 anoxic shelf environments (Tyson, 1993, 1995).

200

201 **5. Discussion**

202 **5.1. Dinoflagellate cyst biostratigraphy and age assessment**

203 Dinoflagellate cyst assemblages have been used widely to correlate Cretaceous marine
204 successions across Australia, South America and Antarctica (Backhouse, 1987; Helby *et al.*,
205 1987; Stevens, 1987; Mohr, 1990; Oosting *et al.*, 2006; Volkheimer, 2010). While zonal
206 schemes based on diagnostic dinoflagellate cyst events have been developed for the Austral
207 region, notably summarized by Helby *et al.* (2004), a persistent challenge has been the frequent
208 lack of independent age control for these palynological successions. In contrast, several well-
209 calibrated dinoflagellate cyst zonal schemes in the Northern Hemisphere have offered valuable
210 biostratigraphical information for the Lower Cretaceous marine strata (e.g., Hoedemaeker and
211 Leereveld, 1995; Leereveld, 1997; Torricelli, 2000). Specifically, the same sequence of
212 diagnostic dinoflagellate cyst events (first occurrence, FO, or last occurrence, LO) can be found
213 across the Tethyan and Boreal regions, with sound age control provided by ammonite and
214 calpionellid events (Hoedemaeker and Leereveld, 1995; Leereveld, 1997; Torricelli, 2000).
215 Despite some differences among the Lower Cretaceous dinoflagellate cyst zones established
216 for the Austral, Tethyan and Boreal realms, these schemes appear to contain enough
217 cosmopolitan taxa with similar distribution patterns to serve as important interregional
218 correlation markers.

219 The PBF dinoflagellate cyst association contains several Valanginian interregional marker
220 species, including *Senoniasphaera tabulata*, *Canningia reticulata*, *Cerbia tabulata*,
221 *Kaiwaradinium scrutillinum*, *Spiniferites* sp., and *Oligosphaeridium complex*. Correlation with
222 the Australian Mesozoic palynological zonation proposed by Helby *et al.* (1987) indicates the
223 presence of the *Senoniasphaera tabulata* Interval Zone in our section. This zonal assignment is
224 based on the first occurrences (FOs) of *Senoniasphaera tabulata* and *Canningia reticulata* at
225 the base of the succession, along with their concurrent range with *Cerbia tabulata*,
226 *Kaiwaradinium scrutillinum*, and *Spiniferites* sp. within the sequence. The *S. tabulata* Interval
227 Zone was introduced by Helby *et al.* (1987) for the middle to late Valanginian in Western
228 Australia and Papua New Guinea. Its latest update by Partridge (2006) to the Geologic Time
229 Scale 2004 assigns a late Valanginian age to the zone. The PBF dinoflagellate cyst association
230 also correlates well with the upper Valanginian *Kaiwaradinium scrutillinum* Oppel Zone
231 defined by Backhouse (1987) in the Perth Basin (Western Australia), which commonly features
232 *Kaiwaradinium scrutillinum*, *Senoniasphaera tabulata*, and *Canningia reticulata*.

233 The FO of representatives of *Spiniferites* sp. and *Oligosphaeridium complex* have been
234 reported from Valanginian strata in both the Northern and Southern hemispheres (Leereveld,
235 1997). The consistent presence of these taxa in the PBF assemblages is comparable to the
236 dinoflagellate cyst association of the *Spiniferites* spp. Interval Zone, introduced by Leereveld
237 (1997) for the Tethyan realm in the Northern Hemisphere. This assignment is based on the FOs
238 of *Spiniferites* spp. and *Oligosphaeridium complex* at the base of the PBF succession, and their
239 concurrent range with *Cerbia tabulata*, *Canningia reticulata*, *Circulodinium vermiculatum*, and
240 *Heslertonia heslertonensis*, through the section. The *Spiniferites* spp. Interval Zone has a
241 stratigraphical range from lower to lower-upper Valanginian, calibrated to the ammonite and
242 calpionellid zones in the Tethyan and Boreal Early Cretaceous. According to Leereveld (1997),
243 this zone corresponds to the *Cassiculosphaeridia delicata* Zone in Western Australia (Stevens,
244 1987), and its upper boundary likely falls within the Austral *Senoniasphaera tabulata* Zone of
245 Helby *et al.* (2004). Following these broad correlations, we can confidently assume a middle to
246 late Valanginian age for the sampled interval of the President Beaches Formation.

247 **5.2. Palaeoenvironmental analysis**

248 The composition of the dinoflagellate cyst assemblages from the PBF suggests neritic
249 conditions for the studied succession. This interpretation is primarily supported by the
250 dominance of gonyaulacoid dinoflagellate cysts, particularly the abundance of
251 *Exochosphaeridium* and *Oligosphaeridium* groups, whose representatives are known to thrive
252 in inner- to outer-neritic settings (e.g., Wilpshaar and Leereveld, 1994; Leereveld, 1995,
253 Niechwedowicz *et al.*, 2021). Furthermore, a relatively high C/M ratio, with a predominance of
254 saccate pollen grains among sporomorphs, also points to an offshore location with high
255 terrestrial input into the basin. The high diversity of dinoflagellate cysts, coupled with a
256 subordinate abundance of peridinioids and a comparatively low P/G ratio, suggest normal
257 nutrient availability and the development of a relatively oligotrophic water mass. This is further
258 supported by the rarity of foraminiferal linings, which tend to be more abundant in high-
259 productivity areas including nearshore and upwelling settings (cf. Niechwedowicz *et al.*, 2021).
260 The overall dominance and diverse composition of the dinoflagellate cyst assemblages strongly
261 indicate normal marine salinity conditions.

262 Palynofacies data support this palaeoenvironmental analysis. The organic matter in every
263 sample is predominantly characterized by opaque phytoclasts, AOM, and abundant
264 dinoflagellate cysts, along with lesser amounts of large translucent phytoclasts, spores and
265 pollen. The opaque phytoclasts are typically equidimensional and medium-sized, rarely lath-

shaped. According to Tyson (1995) and Radmacher *et al.* (2020), a large proportion of equidimensional and rounded opaque phytoclasts indicates a mid-to-distal shelf depositional environment. Moreover, based on the principles of palynofacies analysis, a significant amount of AOM points to a combination of elevated preservation rates and low-energy settings (Tyson, 1993, 1995). The preservation of AOM is directly related to anoxic conditions. Consequently, this palynofacies suggests deposition in a mid-to-distal shelf anoxic environment, characterized by substantial terrestrial input into the basin.

The distribution of palynofacies components is further illustrated using ternary plots: the AOM–Phytoclast–Palynomorph plot of Tyson (1993) and the Microplankton–Spore–Pollen ternary plot (after Fedorova, 1977, and Düringer and Doubinger, 1985) (Fig. 5). Based on the percentages of phytoclast, palynomorph and the AOM, the samples from the PBF plot within two complementary palynofacies fields: IV and VII (Fig. 5A). This distribution suggests deposition occurred in a mid-to-distal dysoxic-anoxic shelf to shelf-to-basin transition (Tyson, 1993, 1995). Palaeoenvironmental interpretations are further developed by plotting the data on the Microplankton–Spore–Pollen diagram. The dominance of the microplankton group, primarily consisting of dinoflagellate cysts, indicates that all samples fall within the offshore field, although a significant terrestrial input is evidenced by the detected pollen and spores (Fig. 5B). Taken together, the inferred settings indicate deposition occurring in a mid-to-distal shelf environment, with concurrently elevated terrestrial input into the basin during the PBF deposition.

The moderate diversity of sporomorphs across all PBF samples indicates fairly varied hinterland vegetation. This land vegetation likely comprised primarily spore-producing pteridophytes and coniferous woodlands, with almost equal proportions of *Araucariacites* and *Podocarpidites*. Given that spore-producing pteridophytes and *Araucariacites* are generally considered to thrive in wet biotopes under warm conditions (cf. Kujau *et al.*, 2013), a warm temperate palaeoclimate characterized by high humidity is proposed for the mid to late Valanginian in the studied area.

5.3. Regional correlations

The dinoflagellate cyst assemblages of the PBF succession exhibit notable similarities with Lower Cretaceous assemblages and zones established in both the Southern Hemisphere (i.e., Australia, New Zealand and South America) and the low palaeolatitudes of the Tethyan realm in the Northern Hemisphere. Crame *et al.* (1993) observed that the terrestrial component of the PBF (spores and pollen) resembled that of the Lower Cretaceous Baqueró Formation in Santa

299 Cruz Province, Argentina, and the Berriasian–Valanginian Springhill Formation within the
300 Magallanes Basin. Their comparison to the Australian Mesozoic palynological zonal scheme
301 by Helby *et al.* (1987) suggested a relationship to the *Fromea cylindrica* Superzone, which
302 spans from Tithonian to early Valanginian. Similarly, Duane (1994, 1996) identified the *F.*
303 *cylindrica* Superzone in the PBF, but also recognized the *Kalyphea wisemaniae* Interval Zone
304 and the following *Cassiculosphaeridia delicata* Interval Zone within this superzone. Based on
305 similarities with these Australian interval zones and the limited distributions of *Kalyphea*
306 *wisemaniae*, *Flamingoia cometa*, *Batiacasphaera angularis*, *Apteodinium palliatum*,
307 *Cassiculosphaeridia delicata*, *Endoscrinium prolatum*, and the *Senoniasphaera ptomatis–*
308 *Canningia reticulata* complex within or at the end of the latest Berriasian in this framework,
309 Duane (1994, 1997) proposed a mid-to-late Berriasian age for the PBF, and a latest Berriasian
310 to early Valanginian age for the Chester Cone Formation. Duane (1996) also noted the common
311 distribution of *Canningia reticulata* and *Canninginopsis* sp. cf. *C. tabulata* sensu Helby *et al.*
312 (1987), in both the PBF and Chester Cone Formation. Crucially, the absence of *Senoniasphaera*
313 *tabulata* in these assemblages implies an upper age limit of mid-Valanginian for the uppermost
314 marine successions of the Byers Group.

315 Volkheimer (2010) characterized upper Valanginian–lower Hauterivian dinoflagellate cyst
316 assemblages from the southern Neuquén Basin in Argentina. He compared these with Lower
317 Cretaceous assemblages from central western Argentina, Patagonia, the Antarctic Peninsula
318 and Australia, highlighting a notable taxonomic similarity with those from the PBF. This author
319 further suggested that the dinoflagellate cyst assemblages from the lowermost part of the Agrio
320 Formation (Neuquén Basin) align with elements of the Australian *Muderongia* Superzone.
321 Significant species identified within this late Valanginian to early Hauterivian age interval
322 include *Kaiwaradinium scrutillinum*, *Systematophora areolata*, and *Senoniasphaera tabulata*.
323 The marine dinoflagellate cyst assemblages found in the Agrio Formation at the Estancia Santa
324 Elena site exhibit a cosmopolitan nature, with a majority of species also found in European and
325 Tethyan regions. This cosmopolitan character indicated an open marine connection between the
326 Neuquén Basin, the Tethyan Realm and western/northwestern Europe in the late Valanginian
327 and early Hauterivian. It also suggested a minimal palaeotemperature gradient from the
328 palaeoequator to the poles (Volkheimer, 2010). These interregional connections were further
329 validated by studies examining the correlation of Barremian–Aptian dinoflagellate cyst
330 assemblages across the Tethyan and Austral realms (Oosting *et al.*, 2006; Paolillo *et al.*, 2018).
331 The dinoflagellate cyst association of the PBF succession documented in this study also largely
332 comprises cosmopolitan species. As previously noted, it correlates well not only with zonal

333 schemes in Australia and South America (specifically, the *Senoniasphaera tabulata* Zone from
334 the Australian Mesozoic and the *Kaiwaradinium scrutillinum* Zone in the Perth Basin, Western
335 Australia), but also with the well-calibrated Tethyan *Spiniferites* spp. Interval Zone.

336 This broad correlation and the more precise age assessment are enabled by the common
337 distribution of *Spiniferites* spp. and *Oligosphaeridium complex* at the base of this zone, as well
338 as their concurrent range with *Cerbia tabulata*, *Canningia reticulata*, *Circulodinium*
339 *vermiculatum*, and *Heslertonia heslertonensis*. It is in this context that *Canningia reticulata* and
340 *C. tabulata* are not limited to the latest Berriasian; rather they persist as part of the Valanginian
341 dinoflagellate cyst assemblages alongside characteristic Valanginian species such as
342 *Senoniasphaera tabulata*, *Kaiwaradinium scrutillinum*, *Oligosphaeridium complex*,
343 *Spiniferites* sp., *Circulodinium vermiculatum*, and *Heslertonia heslertonensis*.

344 **5.4. Palaeobiogeographical notes and suggestions on basin evolution**

345 Provincialism is known to depend on the characteristics of water masses and latitudinal
346 gradients, as well as the patterns and relationships of surface water circulation. Dinoflagellate
347 cyst assemblages found in the PBF indicate a noteworthy austral provincialism. The main
348 similarities are observed with the assemblages recorded from the Early Cretaceous in both
349 onshore and offshore Australia, particularly those noted by Helby *et al.* (1987). Furthermore,
350 the relevance of the Lower Cretaceous dinoflagellate cyst zonal frameworks established for
351 Southern Hemisphere successions (Backhouse, 1987; Helby *et al.*, 1987; Stevens, 1987;
352 Oosting *et al.*, 2006; Volkheimer, 2010) demonstrate possible palaeobiogeographical
353 connections between the Byers assemblages and those from the Austral Realm. Valanginian
354 dinoflagellate cyst assemblages from the PBF appear to contain sufficient proportion of
355 cosmopolitan taxa with similar distribution patterns to serve as markers of interregional
356 correlation. Their affinities are with those from Western Australia and Papua New Guinea
357 (Helby *et al.*, 1987), as well as the Perth Basin (Backhouse, 1987), with a common occurrence
358 of the *Canningia*–*Senoniasphaera* group, a consistent presence of *Senoniasphaera tabulata*,
359 and *Kaiwaradinium scrutillinum*. Additionally, the relative abundance of *Oligosphaeridium*
360 spp., including the very close species *Oligosphaeridium byersense* and *O. quattrocchioae*,
361 along with *Kaiwaradinium scrutillinum*, *Systematophora areolata* and *Senoniasphaera*
362 *tabulata*, indicates that the Byers palynoflora is also associated with those from southern South
363 America, including north-east Tierra del Fuego and the Neuquén Basin (Quattrocchio *et al.*,
364 2006; Volkheimer, 2010). The South American examples show low to moderate diversity and
365 are dominated by broadly distributed species (e.g., *Circulodinium distinctum*, *Cribroperidinium*

366 spp., *Exochosphaeridium* spp., and *Oligosphaeridium complex*) rather than strict southern
367 elements. Valanginian East Gondwanan dinoflagellate cysts suggest probable export of
368 assemblages to the Antarctic/East Gondwanan basins, although more precise calibration is
369 needed to confirm this assumption. Dinoflagellate cysts reveal open marine connections across
370 southern Gondwana during the Valanginian, demonstrating their potential for biostratigraphy
371 and reconstruction of palaeoenvironments.

372 Represented palynological results are not the only basis for studying marine sediments of
373 the Byers Group. Assemblages of calcareous dinoflagellate cysts were also identified in
374 stratigraphic sections of the Chester Cone Formation located near the succession of interest in
375 this study. They indicated the presence of three Tethyan zones: 1) *Carpistomiosphaera*
376 *valanginiana* Zone (with a range at the lower part of the upper Valanginian); 2) *Stomiosphaera*
377 *echinata* Zone (indicating the upper parts of the upper Valanginian and lower Hauterivian); and
378 3) *Cadosinopsis nowaki* Zone (with a range from the uppermost parts of the upper Valanginian
379 to the lower Hauterivian). Their recognition follows the definitions given by Lakova *et al.*
380 (1999) and Reháková (2000). Our data are most closely related to the *C. valanginiana* and *S.*
381 *echinata* zones identified in the Neuquén Basin (Kietzmann and Scasso, 2020). Using
382 calcareous dinoflagellate cyst data correlated with the coeval ammonite and calpionellid zones,
383 Kietzmann and Sturlesi (2023) concluded that the *C. valanginiana* Zone corresponds to the
384 lower–upper Valanginian (excluding the lowermost Valanginian), whereas the *S. echinata* Zone
385 conforms to the Hauterivian. However, *Cadosinopsis nowaki* has not been discovered by these
386 authors. The data from Byers can be linked to those from Argentina based on these insights.
387 Therefore, we can assume that in Byers calcareous dinoflagellate cyst associations the *C.*
388 *valanginiana* Zone covers the Valanginian, and the *S. echinata* and *C. nowaki* zones cover the
389 Hauterivian. Essentially, the Byers Group, in addition to the PBF, corresponds to a broader
390 stratigraphic range than previously considered. This dataset will be featured in an upcoming
391 paper, yet it is noted here to support the palynological evidence without going to deeper details.
392 Taking these data into consideration, we also note that there are no recent observations of the
393 Start Hill Formation because its type area currently has restricted access to field studies. It is
394 however relevant to the determination of the maximum age of marine sediments comprising the
395 Byers Group below and the continental strata covering them above. Hathway and Lomas (1998)
396 provided age estimates from the Start Hill Formation in the range of 143 ± 5 to 128 ± 3 and even
397 123 ± 4 Ma, which are highly discordant, yet they roughly align with the timeframe obtained
398 from our calcareous dinoflagellate cyst data. In addition, the isotopic age reported by Haase *et*
399 *al.* (2012) is nearly equivalent. Based on these findings and our working data, we presuppose

400 that the Start Hill Formation is coeval with both the upper levels of the PBF and the Chester
401 Cone Formation, so it may be laterally intercalated within these strata. It is therefore assumed
402 here that the Valanginian–Aptian erosional hiatus between the Chester Cone and Cerro Negro
403 formations was of shorter duration, i.e., early Hauterivian–Aptian. Consequently, it is likely
404 that the uplift of the marine marginal basins, part of the continental island volcanic arc on the
405 western flank of the northern Antarctic Peninsula, suggested by Hathway and Lomas (1998)
406 and widely accepted thereafter, occurred later and more rapidly than previously estimated. A
407 study by Gao *et al.* (2021) revealed the origin and southward translation of the South Shetland
408 Islands from the western margin of the Southern Patagonian-Fuegian Andes between mid-
409 Berriasian and early Albian. Observations of similarities between Australian palynofloras and
410 South American palynofloras support this conclusion. Thus, the succession of the Byers Group
411 can be considered evidence for continental fragmentation and fore-arc basin uplift, which
412 resulted in the expansion of the basin and its association with parts of the Antarctic Peninsula,
413 including the Adelaide and Alexander Islands regions, as suggested by Bastias *et al.* (2020).

414 **6. Conclusions**

415 The President Beaches Formation section on Byers Peninsula (Antarctica), records a
416 continuous siliciclastic succession rich in diverse and well-preserved organic-walled
417 dinoflagellate cyst assemblages, along with gymnosperms and pteridophyte spores.
418 Dinoflagellate cyst analysis enabled the recognition of the *Senoniasphaera tabulata* Interval
419 Zone, dating the sampled succession to the mid–late Valanginian. The analysis of dinoflagellate
420 cyst assemblages further revealed low-energy neritic conditions, characterized by normal
421 marine productivity and nutrient availability, and the development of relatively oligotrophic
422 water mass. Supporting this, a relatively high C/M particle ratio indicates an offshore location
423 with significant terrestrial input into the basin. Palynofacies data consistently support a mid-to-
424 distal shelf depositional environment. Sporomorph diversity reveals a hinterland vegetation
425 primarily composed of pteridophyte-spore producing plants and coniferous forests, with nearly
426 equal proportions of *Araucariacites* and *Podocarpidites*. Based on these findings, we propose
427 a warm temperate climate with high humidity in the studied area.

428 It is noteworthy that the dinoflagellate cyst assemblages of the President Beaches Formation
429 reflect a notable austral provincialism. Their distribution patterns are similar enough to serve
430 as markers of interregional correlation, since they contain a sufficient proportion of
431 cosmopolitan taxa. They show affinities with Australia and Papua New Guinea, but the relative
432 abundance of *Oligosphaeridium*, *Kaiwaradinium*, *Systematophora*, and *Senoniasphaera* also

433 indicate an association with South America. Based on the palynological data, along with the
434 calcareous dinocyst data of the covering strata, whose processing is in progress, it appears that
435 the Byers Group corresponds to a broader stratigraphic range than previously thought. Hence,
436 the uplift of the marine marginal basins on the western flank of the northern Antarctic Peninsula,
437 including those in which the marine sediments of the Byers Group were deposited, is likely to
438 have occurred later and more rapidly than previously recognized.

439

440 **Acknowledgements**

441 This study is funded by the Bulgarian Antarctic Program, Project “Complex stratigraphic
442 and palaeoclimatic studies of part of the Byers Group, Byers Peninsula, Livingston Island,
443 Antarctica”, Contract No. 70-25-10/15.01.2024. We are grateful to Dr. P. Gedl (Polish
444 Academy of Sciences) for his help for the palynological processing of the samples. The authors
445 are immensely grateful to John Smellie, James Riding, and one anonymous reviewer for critical
446 reviews of the text and useful suggestions, which helped to improve the quality of the
447 manuscript. Guest Editor Robert J. Pankhurst provided much-appreciated advice on the design
448 of some of the figures.

449

450 **References**

451 Alberti, G. 1961. Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten und
452 Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen anderen europäischen
453 Gebieten. *Palaeontographica A* 116 (1–4): 1–58.

454 Askin, R.A. 1981. Jurassic–Cretaceous palynology of Byers Peninsula, Livingston Island,
455 Antarctica. *Antarctic Journal of the United States* 16 (5): 11–13.

456 Backhouse, J. 1987. Microplankton zonation of the Lower Cretaceous Warnbro Group, Perth
457 Basin, Western Australia. In *Studies in Australian Mesozoic Palynology* (Jell, P.A.; editor).
458 Association of Australasian Palaeontologists: 205–223. Sydney.

459 Bastias, J., Calderón, M., Israel, L., Hervé, F., Spikings, R., Pankhurst, R., Castillo, P., Fanning,
460 M., Ugalde, R. 2020. The Byers Basin: Jurassic–Cretaceous tectonic and depositional
461 evolution of the forearc deposits of the South Shetland Islands and its implications for the
462 northern Antarctic Peninsula. *International Geology Review* 62 (11): 1467–1484.
463 <https://doi.org/10.1080/00206814.2019.1655669>.

464 Below, R. 1981. Dinoflagellaten-Zysten aus dem oberen Hauterive bis unteren Cenoman Süd-
465 West Marokkos. *Palaeontographica B* 176: 1–145.

466 Brelie, G. 1964. Eine unterkretazische Mikroflora aus dem nördlichen Sauerland. Fortschritt in
467 der Geologie von Rheinland und Westfalen 12: 117–168.

468 Brinkhuis, H. 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian
469 type-area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation.
470 *Palaeogeography, Palaeoclimatology, Palaeoecology* 107 (1–2): 121–163.
471 [https://doi.org/10.1016/0031-0182\(94\)90168-6](https://doi.org/10.1016/0031-0182(94)90168-6).

472 Crame, J.A. 1995. Occurrence of the bivalve genus *Manticula* in the Early Cretaceous in
473 Antarctica. *Palaeontology* 38 (2): 299–312.

474 Crame, J.A., Pirrie, D., Crampton, J.S., Duane, A.M. 1993. Stratigraphy and regional
475 significance of the Upper Jurassic–Lower Cretaceous Byers Group, Livingston Island,
476 Antarctica. *Journal of the Geological Society London* 150: 1075–1087.
477 <https://doi.org/10.1144/gsjgs.150.6.1075>.

478 Covacevich, V. 1976. Fauna Valanginiana de Península Byers, Isla Livingston, Antártica.
479 *Revista Geológica de Chile* 3: 25–56.

480 Dettmann, M.E. 1963. Upper Mesozoic microfloras from south-eastern Australia. *Proceedings
481 of The Royal Society of Victoria* 77: 1–148.

482 Dochev, D., Idakieva, V., Ivanov, M., Velev, S., Bonev, K. 2017. Ammonite fauna from the
483 Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. *Comptes rendus, de
484 l'Académie bulgare des sciences* 70 (11): 1557–1566.

485 Dochev, D., Pavlishina P. 2020. New palynological results in age and palaeoenvironmental
486 assessment on parts of the Byers Group, Livingston Island, Antarctica. *Comptes rendus, de
487 l'Académie bulgare des sciences* 73 (6): 839–845.

488 Duane A.M. 1994. Preliminary investigation of the Byers Group (Late Jurassic–Early
489 Cretaceous), Livingston Island, Antarctic Peninsula. *Review of Palaeobotany and
490 Palynology* 84 (1–2): 113–120. [https://doi.org/10.1016/0034-6667\(94\)90045-0](https://doi.org/10.1016/0034-6667(94)90045-0).

491 Duane, A.M. 1996. Palynology of the Byers Group (Late Jurassic–Early Cretaceous) of
492 Livingston and Snow islands, Antarctic Peninsula: its biostratigraphical and
493 palaeoenvironmental significance. *Review of Palaeobotany and Palynology* 91 (1–4): 241–
494 281. [https://doi.org/10.1016/0034-6667\(95\)00094-1](https://doi.org/10.1016/0034-6667(95)00094-1).

495 Duane, A.M. 1997. Taxonomic investigations of palynomorphs from the Byers Group (Upper
496 Jurassic–Lower Cretaceous), Livingston and Snow islands, Antarctic Peninsula. *Palynology*
497 21: 123–144. <https://doi.org/10.1080/01916122.1997.9989491>.

498 Düringer, P., Doubinger, J. 1985. La palynologie: un outil de caractérisation des facies marins
499 et continentaux à la limite Muschelkalk supérieur – Lettenkohle. Sciences Géologiques,
500 Bulletins et mémoires 38 (1): 19–34. <https://doi.org/10.3406/sgeol.1985.1687>.

501 Fedorova, V.A. 1977. The significance of the combined use of microphytoplankton, spores and
502 pollen for differentiation of multi-facies sediments. In *Questions of Phytostratigraphy*
503 (Samoilovich, S.R., Timoshin N.A.; editors). Trudy Neftyanoi nauchnoissledovatelskii
504 geologo-razvedochnyi Intitut (VNIGRI) 398: 70–88 [in Russian].

505 Fensome, R.A., Williams, G.L., MacRae, R.A. 2019. The Lentin and Williams index of fossil
506 dinoflagellates 2019 Edition. AASP Contribution Series 50: 1173 pp.

507 Gao, L., Pei, J., Zhao, Y., Yang, Z., Riley, T.R., Liu, X., Zhang, S.-H., Liu, J.-M. 2021. New
508 paleomagnetic constraints on the Cretaceous tectonic framework of the Antarctic Peninsula.
509 Journal of Geophysical Research: Solid Earth 126, e2021JB022503.
510 <https://doi.org/10.1029/2021JB022503>.

511 Georgiev, S., Velev, S., Dochev, D., Metodiev, S., Balkanska, E., Sabeva, R., Georgiev, N.
512 2023. Time constraints on the geological evolution of the main sedimentary basins and
513 tectono-magmatic events on Livingston Island, South Shetland Archipelago, Antarctica: a
514 review. *Geologica Balcanica* 52 (3): 61–72. <https://doi.org/10.52321/GeolBalc.52.3.61>.

515 González-Ferrán O., Katsui, Y., Tavera, J. 1970. Contribución al conocimiento geológico de la
516 Península Byers, Isla Livingston, Islas Shetland del Sur, Antártica. INACH Serie Científica
517 1 (1): 41–54.

518 Haase, K.M., Beier, C., Fretzdorff, S., Smellie, J.L., Garbe-Schönberg, D. 2012. Magmatic
519 evolution of the South Shetland Islands, Antarctica, and implications for continental crust
520 formation. Contributions to Mineralogy and Petrology 163 (6), 1103–1119.
521 <https://doi.org/10.1007/s00410-012-0719-7>.

522 Hathway, B. 1997. Nonmarine sedimentation in an Early Cretaceous extensional continental-
523 margin arc, Byers Peninsula, Livingston Island, South Shetland Islands. *SEPM Journal of*
524 *Sedimentary Research* 67 (4): 686–697, <https://doi.org/10.1306/D4268617-2B26-11D7-8648000102C1865D>.

525

526 Hathway, B., Lomas, S.A. 1998. The Upper Jurassic–Lower Cretaceous Byers Group, South
527 Shetland Islands, Antarctica: revised stratigraphy and regional correlations. *Cretaceous*
528 *Research* 19 (1): 43–67. <https://doi.org/10.1006/cres.1997.0095>.

529 Helby, R., Morgan, R., Partridge, D. 1987. A palynological zonation of the Australian
530 Mesozoic. In *Studies in Australian Mesozoic Palynology* (Jell, P.A.; editor). Association of
531 Australasian Palaeontologists 4: 1–94.

532 Helby, R., Morgan, R., Partridge, A.D., 2004. Updated Jurassic–Early Cretaceous Dinocyst
533 Zonation NWS Australia. Geoscience Australia Publication1, 920871 01 2: 2 p.

534 Hernández, P.J., Azcárate, V. 1971. Estudio paleobotánico preliminar sobre restos de una
535 taoflora de la Península Byers (Cerro Negro), Isla Livingston, Islas Shetland del Sur,
536 Antártica. Serie Científica, Instituto Antártica Chileno 2: 15–50.

537 Hobbs, E.J. 1968. The geology of the South Shetland Islands. IV. The geology of the Livingston
538 Island. British Antarctic Survey, Scientific Reports 47: 1–34.

539 Hoedemaeker, P.J., Leereveld, H. 1995. Biostratigraphy and sequence stratigraphy of the
540 Berriasian-lowest Aptian (Lower Cretaceous) of the Rio Argos succession, Caravaca, SE
541 Spain. Cretaceous Research 16 (2–3): 195e230. <https://doi.org/10.1006/cres.1995.1016>

542 Kietzmann, D.A., Scasso, R.A. 2020. Jurassic to Cretaceous (upper Kimmeridgian–?lower
543 Berriasian) calcispheres from high palaeolatitudes on the Antarctic Peninsula: Local
544 stratigraphic significance and correlations across Southern Gondwana margin and the
545 Tethyan realm. Palaeogeography, Palaeoclimatology, Palaeoecology 537 (1), 109419.
546 <https://doi.org/10.1016/j.palaeo.2019.109419>.

547 Kietzmann, D.A., Sturlesi, M.A. 2023. Calpionellid zones from the Agrio Formation, Neuquen
548 Basin, Argentina. Journal of South American Earth Sciences 126, 104335.
549 <https://doi.org/10.1016/j.jsames.2023.104335>.

550 Kujau, A., Heimhofer, U., Hochuli, P.A., Pauly, S., Morales, C., Adatte, T., Föllmi, K., Ploch,
551 I., Mutterlose, J. 2013. Reconstructing Valanginian (Early Cretaceous) mid-latitude
552 vegetation and climate dynamics based on spore-pollen assemblages. Review of
553 Palaeobotany and Palynology 197: 50–69.
554 <http://dx.doi.org/10.1016/j.revpalbo.2013.05.003>.

555 Lakova, I., Stoykova, K., Ivanova, D. 1999. Calpionellid, nannofossil and calcareous dinocyst
556 bioevents and integrated biochronology of the Tithonian to Valanginian in the Western
557 Balkanides, Bulgaria. Geologica Carpathica 50 (2): 151–168.

558 Leereveld, H. 1997. Dinoflagellate cysts from the Lower Cretaceous Rio Argos succession (SE
559 Spain). LPP Contribution series 2, LPP Foundation, Utrecht, 1–175.

560 Lomas, S.A. 1999. A Lower Cretaceous clastic slope succession, Livingston Island, Antarctica:
561 sand-body characteristics, depositional processes and implications for slope apron
562 depositional models. Sedimentology 46 (3): 477–504. <https://doi.org/10.1046/j.1365-3091.1999.00225.x>.

564 Mohr, B.A.R. 1990. Early Cretaceous palynomorphs from ODP Sites 692 and 693, the Weddell
565 Sea, Antarctica. In Proceedings of the Ocean Drilling Program, Scientific Results (Barker,

566 P.F., Kennett, J.P., et al.; editors). College Station, TX (Ocean Drilling Program) 113: 449–
567 464. <https://doi.org/10.2973/odp.proc.sr.113.207.1990>

568 Niechwedowicz, M., Walaszczyk, I., Barski, M. 2021. Phytoplankton response to
569 palaeoenvironmental changes across the Campanian–Maastrichtian (Upper Cretaceous)
570 boundary interval of the Middle Vistula River section, central Poland. *Palaeogeography,
571 Palaeoclimatology, Palaeoecology*, 577 (1): 110558.
572 <https://doi.org/10.1016/j.palaeo.2021.110558>

573 Oosting, A.M., Leereveld, H., Dickens, G.R., Henderson, R.A., Brinkhuis, H. 2006. Correlation
574 of Barremian–Aptian (mid-Cretaceous) dinoflagellate cyst assemblages between the
575 Tethyan and Austral realms. *Cretaceous Research* 27 (6): 792–813.
576 <https://doi.org/10.1016/j.cretres.2006.03.012>.

577 Paolillo, M. Guler, M.V., Lazo, D.G., Pazos, P.J., Ottone, E.G., Aguirre-Urreta, B. 2018. Early
578 Cretaceous dinoflagellate cysts from the Agrio Formation at its type locality (Neuquén
579 Basin, Argentina) and their biostratigraphic implications. *Ameghiniana* 55 (5): 554–570.
580 <https://doi.org/10.5710/AMGH.26.04.2018.3176>.

581 Partridge, A.D. 2006. Jurassic–Early Cretaceous zonations NWS Australia: 1st update of HMP
582 2004. In *Australian Mesozoic and Cenozoic Palynology Zonations – updated to the 2004
583 Geologic Time Scale* (Monteil, E.; coordinator). *Geoscience Australian Record* 2006/23.

584 Pimpirev, Ch., Vangelov, D. 1998. Ancient subaqueous mouth bar type delta system, Byers
585 Group, Livingston Island, Antarctica. *Annuaire de l'Université de Sofia “St. Kliment
586 Ohridski”, Faculté de Géologie et Géographie* 1 (90): 29–43.

587 Radmacher, W., Niezgodzki, I., Tyszka, J., Mangerud, G., Pearce, M.A., 2020. Palynology vs.
588 model simulation: oceanographic reconstruction of incomplete data from the Cretaceous
589 Greenland–Norwegian Seaway. *Newsletters on Stratigraphy* 53 (1): 93–120.
590 <https://doi.org/10.1127/nos/2019/0527>

591 Reháková, D. 2000. Evolution and distribution of the Late Jurassic and Early Cretaceous
592 calcareous dinoflagellates recorded in the Western Carpathian pelagic carbonate facies.
593 *Mineralia Slovaca* 32 (2): 79–88.

594 Quattrocchio, M.E., Martínez, M.A., Carpinelli Pavisich, A., Volkheimer, W. 2006. Early
595 Cretaceous palynostratigraphy, palynofacies and palaeoenvironments of well sections in
596 northeastern Tierra del Fuego. *Cretaceous Research* 27 (4): 584–602.
597 <https://doi.org/10.1016/j.cretres.2005.11.012>.

598 Smellie, J.L., Davies, R.E.S., Thomson, M.R.A. 1980. Geology of a Mesozoic intra-arc
599 sequence of Byers Peninsula, Livingston Island, South Shetland Islands. British Antarctic
600 Survey Reports 50: 55–76.

601 Stevens, J. 1987. Some Early Cretaceous dinoflagellates from the *Cassiculosphaeridium delicata*
602 Zone on the Exmouth Plateau, Western Australia. In Studies in Australian Mesozoic
603 Palynology (Jell, P.A.; editor). Memoir of the Association of Australasian Paleontologists 4:
604 185–197.

605 Tavera, J.J. 1970. Fauna Titoniana–Neocomiana de la Isla Livingston, Islas Shetland del Sur,
606 Antártica. INACH Serie Científica 1 (2): 175–186.

607 Torricelli, S. 2000. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the
608 Cismon APTICORE (Southern Alps, Italy). Review of Palaeobotany and Palynology 108
609 (3–4): 213–266. [https://doi.org/10.1016/S0034-6667\(99\)00041-X](https://doi.org/10.1016/S0034-6667(99)00041-X)

610 Tyson, R. 1993. Palynofacies analysis. In Applied Micropaleontology (Jenkins, D.G.; editor).
611 Kluwer Academic Publishers: 153–191. Dordrecht.

612 Tyson, R. 1995. Sedimentary organic matter. Organic facies and palynofacies. Chapman and
613 Hall: 615 pp. London. <https://doi.org/10.1007/978-94-011-0739-6>.

614 Valenzuela, F., Hervé, F. 1972. Geology of Byers Peninsula, Livingston Island, South Shetland
615 Islands. In Antarctic geology and geophysics (Adie, R.J.; editor). Universitetsforlaget, Oslo:
616 83–90.

617 Volkheimer, W. 2010. Early Cretaceous dinoflagellate cyst from the southern border of the
618 Neuquén basin, Estancia Santa Elena locality, Argentina. Revista del Museo Argentino de
619 Ciencias Naturales 12 (2): 233–253. <https://doi.org/10.22179/REVMACN.12.243>.

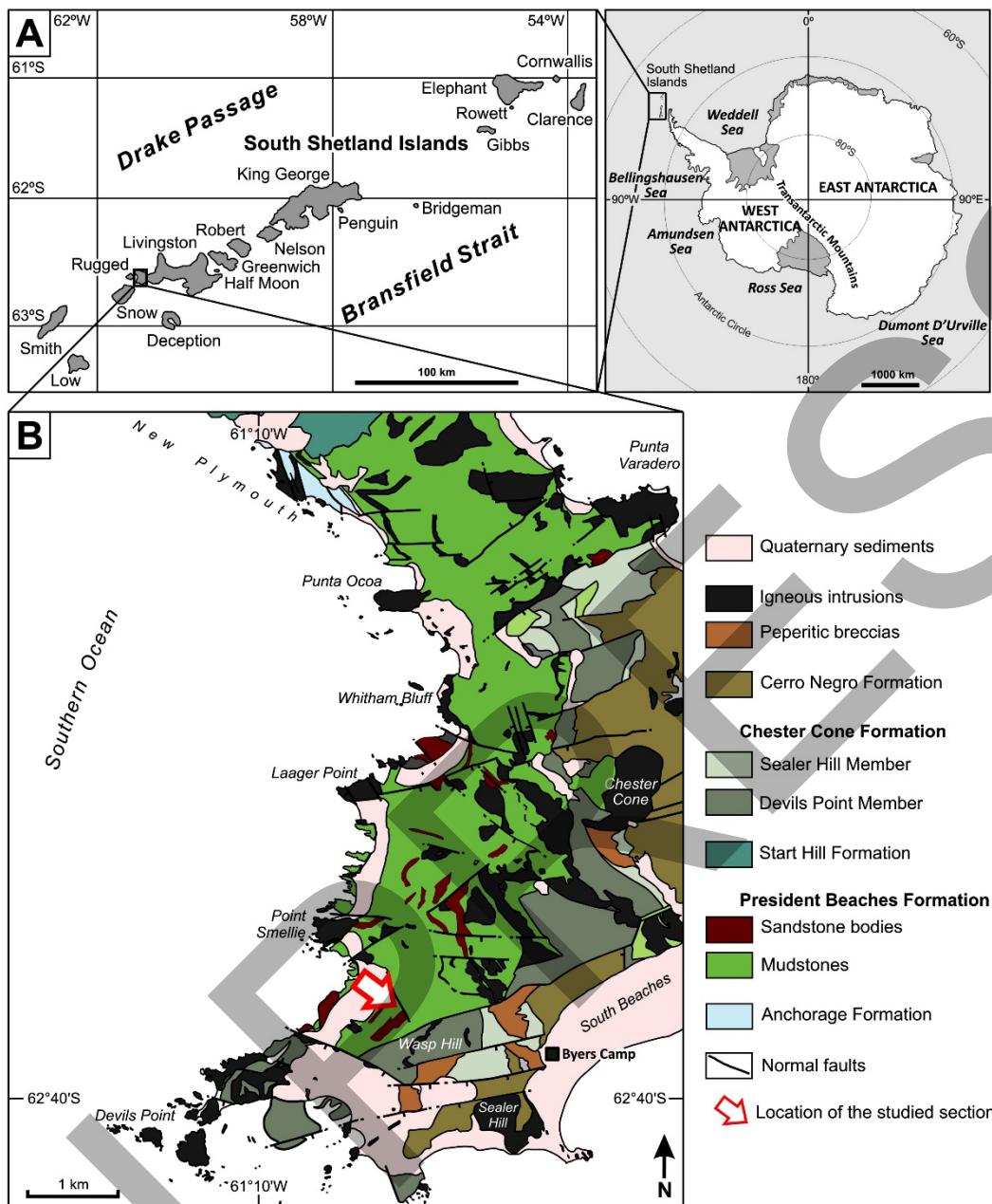
620 Wilpshaar, M., Leereveld, H. 1994. Palaeoenvironmental change in the Early Cretaceous
621 Vocontian Basin (SE France) reflected by dinoflagellate cysts. Review of Palaeobotany and
622 Palynology 84: 121–128. [https://doi.org/10.1016/0034-6667\(94\)90046-9](https://doi.org/10.1016/0034-6667(94)90046-9).

623

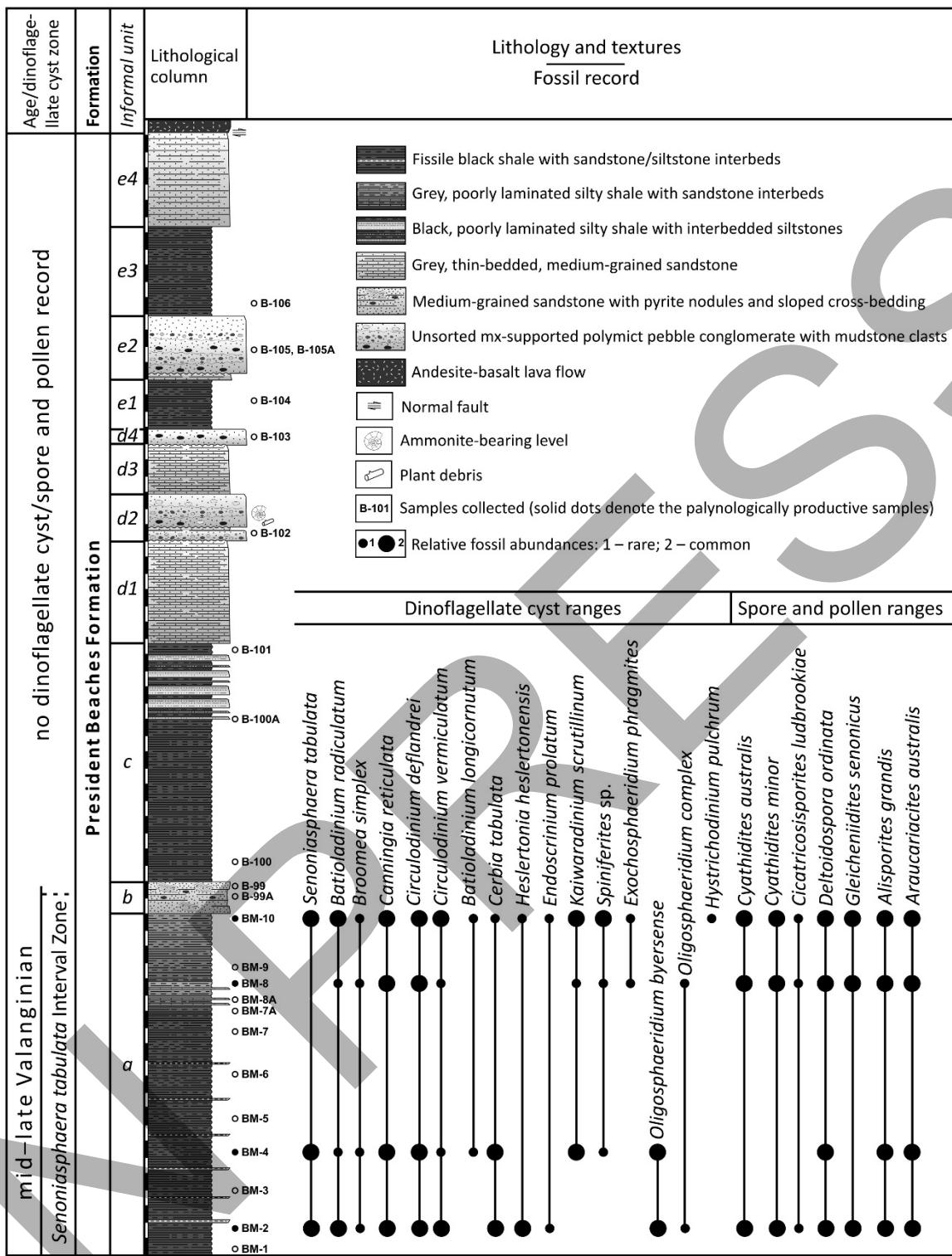
624 **Appendix. Taxonomic list**

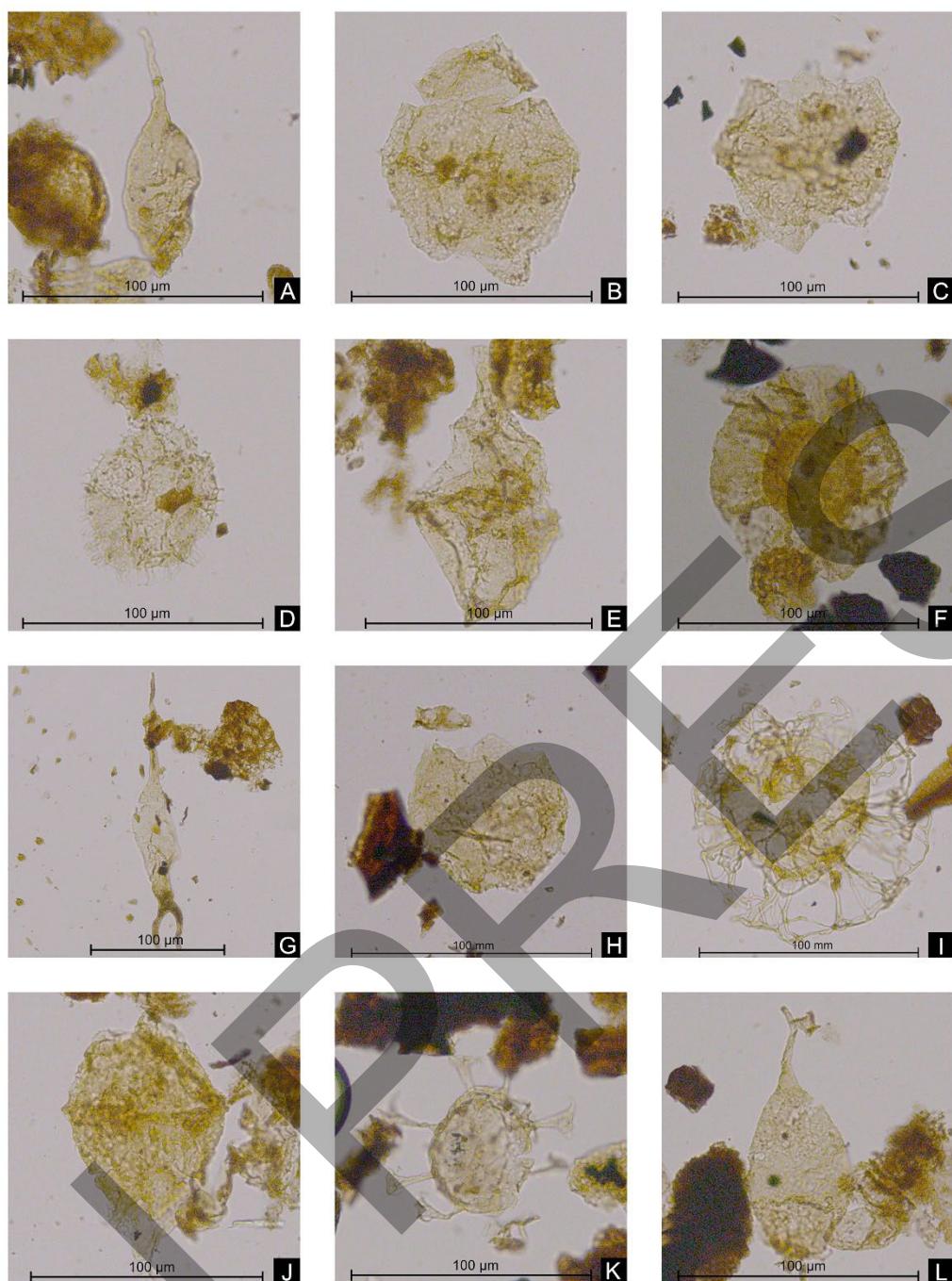
625 Alphabetic list of all dinoflagellate cyst, spore and pollen taxa mentioned in the text and figures.

626 *Araucariacites australis* Cookson, 1947


627 *Alisporites grandis* (Cookson, 1953) Dettmann, 1963

628 *Batioladinium longicornutum* (Alberti, 1961) Brideaux, 1975


629 *Batioladinium radiculatum* Davey, 1982


630 *Broomea simplex* Cookson and Eisenack, 1958

631 *Canningia pistica* Helby, 1987
632 *Canningia reticulata* Cookson and Eisenack, 1960
633 *Canninginopsis colliveri* (Cookson and Eisenack, 1960) Backhouse, 1988
634 *Cassiculosphaeridia delicata* Stover and Helby, 1987
635 *Cerbia tabulata* (Davey and Verdier, 1974) Below, 1981
636 *Cicatricosisporites ludbrookiae* Dettmann, 1963
637 *Circulodinium deflandrei* Alberti, 1961
638 *Circulodinium distinctum* (Deflandre and Cookson, 1955) Jansonius, 1986
639 *Circulodinium vermiculatum* Stover and Helby, 1987
640 *Cyathidites australis* Couper, 1953
641 *Cyathidites minor* Couper, 1953
642 *Deltoidospora ordinata* Brelie, 1964
643 *Endoscrinium prolatum* (Stevens, 1987) Lentin and Williams, 1989
644 *Exochosphaeridium phragmites* Davey et al., 1966
645 *Gleicheniidites senonicus* Ross, 1949
646 *Heslertonia heslertonensis* (Neale and Sarjeant, 1962) Sarjeant, 1966
647 *Hystrichodinium pulchrum* Deflandre, 1935
648 *Kaiwaradinium scrutillinum* Backhouse, 1987
649 *Oligosphaeridium byersense* Duane, 1997
650 *Oligosphaeridium complex* (White, 1842) Davey and Williams, 1966
651 *Oligosphaeridium diluculum* Davey, 1982
652 *Papuadinium apiculatum* (Cookson and Eisenack, 1960) Davey, 1988
653 *Senoniasphaera tabulata* Backhouse and Helby, 1987
654 *Spiniferites* sp.
655
656

659 FIG. 1. A. Location maps for the South Shetland Archipelago and Livingston Island with the
 660 geographic position of Byers Peninsula. B. Generalized geological map of Byers
 661 Peninsula, showing the location of studied section (modified after Crame *et al.*, 1993,
 662 and Hathway and Lomas, 1998).

666

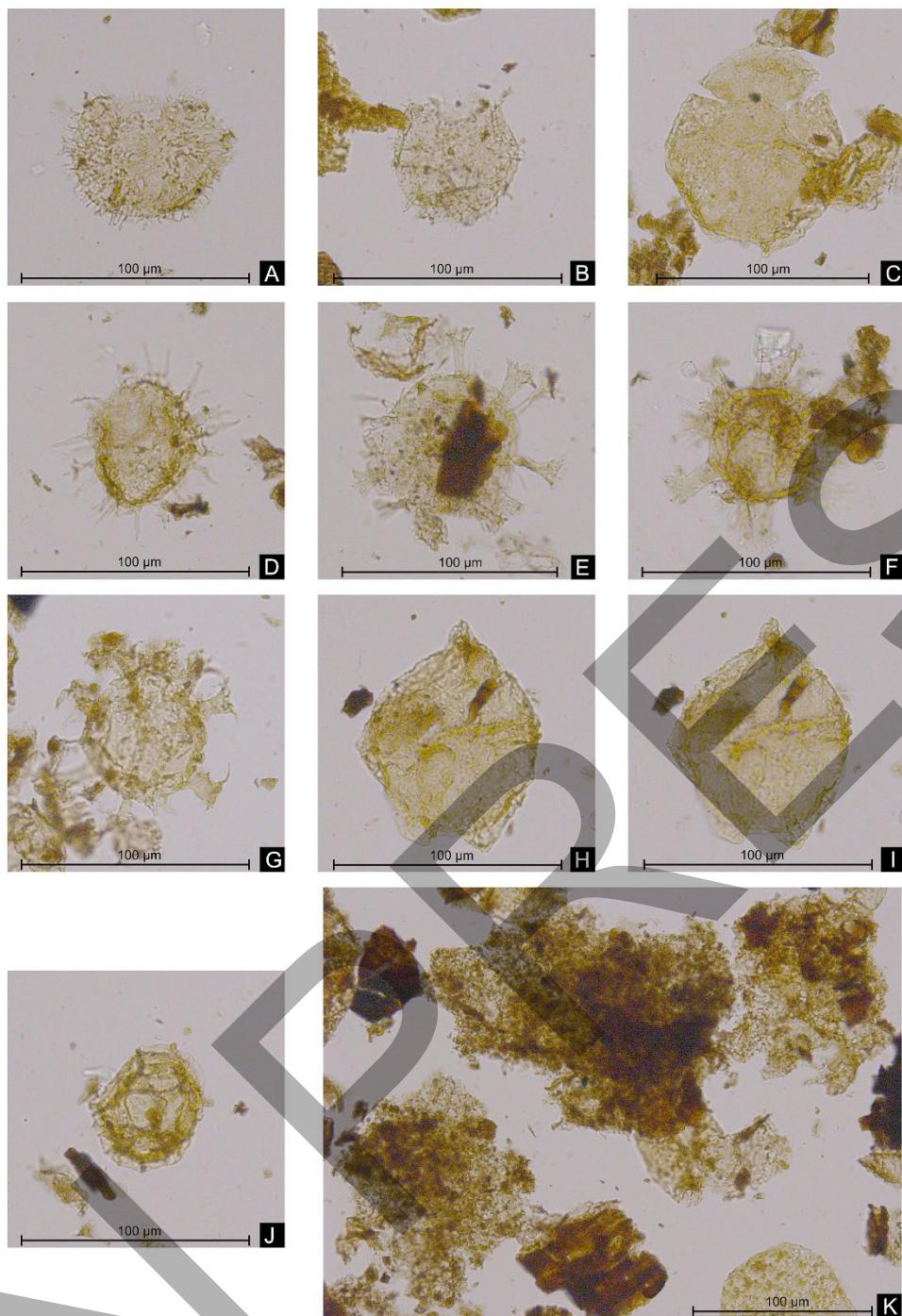
667

668

669

670

671


672

673

674

675

FIG. 3. Biostratigraphically significant dinoflagellate cyst species from the President Beaches Formation, Byers Peninsula, Livingston Island, Antarctica. **A.** *Broomea simplex* (sample BM-2, SU-BM2). **B–C.** *Canningia reticulata* (sample BM-2, SU-BM2). **D.** *Cerbia tabulata* (sample BM-2, SU-BM2). **E.** *Endoscrinium prolatum* (sample BM-2, SU-BM2). **F.** *Heslertonia heslertonensis* (sample BM-2, SU-BM2). **G.** *Batioladinium longicornutum* (sample BM-4, SU-BM4). **H.** *Circulodinium vermiculatum* (sample BM-4, SU-BM4). **I.** *Papuadinium apiculatum* (sample BM-4, SU-BM4). **J.** *Senoniasphaera tabulata* (sample BM-4, SU-BM4). **K.** *Oligosphaeridium complex* (sample BM-8, SU-BM8). **L.** *Batioladinium radiculatum* (sample BM-10, SU-BM 10).

676

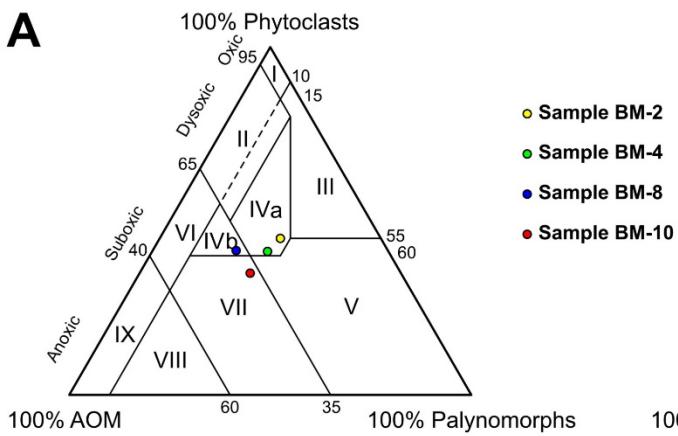
677

678

679

680

681


682

683

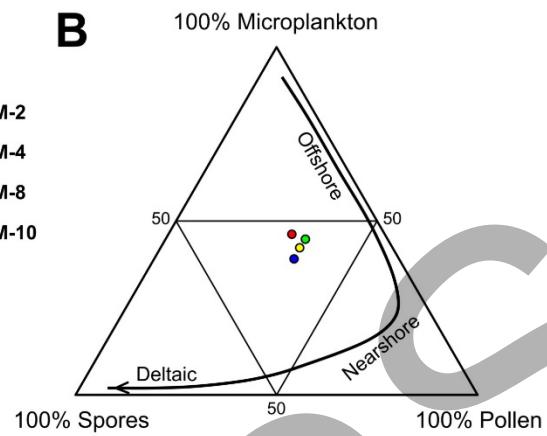

684

FIG. 4. Biostratigraphically significant dinoflagellate cyst species from the President Beaches Formation, Byers Peninsula, Livingston Island, Antarctica. **A–B.** *Circulodinium deflandrei* (sample BM-10, SU-BM10). **C.** *Circulodinium vermiculatum* (sample BM-10, SU-BM10). **D.** *Hystrichodinium pulchrum* (sample BM-10, SU-BM10). **E–F.** *Kaiwaradinium scrutillinum* (sample BM-10, SU-BM10). **G.** *Oligosphaeridium byersense* (sample BM-4, SU-BM4). **H–I.** *Senoniasphaera tabulata* (sample BM-10, SU-BM10). **J.** *Spiniferites* sp. (sample BM-10, SU-BM10). **K.** Palynofacies with amorphous organic matter (AOM), sample BM-8, SU-BM8.

A

B

685

686 FIG. 5. Palynofacies ternary and palynomorph plots with positions of palynological samples. A. AOM–
687 Phytoclast–Palynomorph plot with palynofacies fields of Tyson (1993). Field IV indicates shelf
688 to basin transition. Field VII indicates distal dysoxic–anoxic shelf. B. Microplankton–Spore–
689 Pollen ternary plot (after Fedorova, 1977, and Düringer and Doubinger, 1985).